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Abstract. Online learning to rank methods aim to optimize ranking models based
on user interactions. The dueling bandit gradient descent (DBGD) algorithm is
able to effectively optimize linear ranking models solely from user interactions. We
propose an extension of DBGD, called probabilistic multileave gradient descent (P-
MGD) that builds on probabilistic multileave, a recently proposed highly sensitive
and unbiased online evaluation method. We demonstrate that P-MGD significantly
outperforms state-of-the-art online learning to rank methods in terms of online
performance, without sacrificing offline performance and at greater learning speed.

1 Introduction
Modern search engines are complex aggregates of multiple ranking signals. Such aggre-
gates are learned using learning to rank methods. Online learning to rank methods learn
from user interactions such as clicks [4, 6, 10, 12]. Dueling Bandit Gradient Descent [16,
DBGD] uses interleaved comparison methods [1, 3, 6, 7, 10] to infer preferences and
then learns by following a gradient that is meant to lead to an optimal ranker.

We introduce probabilistic multileave gradient descent (P-MGD), an online learning
to rank method that builds on a recently proposed highly sensitive and unbiased online
evaluation method, viz. probabilistic multileave. Multileave comparisons allow one to
compare multiple but a still limited set of candidate rankers per user interaction [13]. The
more recently introduced probabilistic multileave comparison method improves over this
by allowing for comparisons of an unlimited number of rankers at a time [15]. We show
experimentally that P-MGD significantly outperforms state-of-the-art online learning to
rank methods in terms of online performance, without sacrificing offline performance
and at greater learning speed than those methods. In particular, we include comparisons
between P-MGD on the one hand and multiple types of DBGD and multileaved gradient
descent methods [14, MGD] and candidate preselection [5, CPS] on the other. We answer
the following research questions: (RQ1) Does P-MGD convergence on a ranker of the
same quality as MGD and CPS? (RQ2) Does P-MGD require less queries to converge
compared to MGD and CPS? (RQ3) Is the user experience during the learning process
of P-MGD better than during that of MGD or CPS?

2 Probabilistic multileaving
Multileaving [13] is an online evaluation approach for inferring preferences between
rankers from user clicks. Multileave methods take a set of rankers and when a query
is submitted a ranking is computed for each of the rankers. These rankings are then



combined into a single multileaved ranking. In the case of Team Draft Multileaving
(TDM) each document in this resulting ranking is assigned to a ranker. The user is
then presented this multileaved ranking and his interactions are recorded. TDM keeps
track of the clicks and attributes every clicked document to the ranker which it was
assigned to. Two important aspects of online evaluation methods are sensitivity and bias.
Empirical evaluation has shown that TDM is more sensitive than existing interleaving
methods [3, 9, 11], since it requires fewer user interactions to infer preferences. Secondly,
empirical evaluation also showed that TDM has no significant bias [13].

Probabilistic multileave [15, PM] extends probabilistic interleave [3, PI]. Unlike
TDM, PM selects documents from a distribution where the probability of being added
correlates with the perceived relevance. Furthermore, it marginalizes over all possible
team assignments, which makes it more sensitive and allows it to infer preferences within
a virtually unlimited set of rankers from a single interaction. The increased sensitivity of
PM was confirmed by empirical evaluation, together with its lack of bias [15].

The novel contribution of this paper is that we use PM instead of TDM for inferring
preferences in our online learning to rank method, described in the next section, allowing
the learner to explore a virtually unlimited set of rankers.

3 Online learning to rank methods
In this section we discuss several online learning to rank methods. Besides detailing
existing baselines, we introduce P-MGD, a new variant of MGD.

Dueling Bandit Gradient Descent (DBGD) [16] uses an interleaving method (e.g. Team
Draft Interleaving [10]) to infer a relative feedback signal: at each interaction with a
user the algorithm uses interleaving to infer a preference between its current best ranker
and a candidate ranker. If a preference for the candidate is inferred from the interaction
DBGD updates the ranker accordingly. With n = 1, Algorithm 1 boils down to DBGD.

Multileave Gradient Descent (MGD) [14] is an extension to DBGD that infers prefer-
ences with a larger group of candidate rankers using multileaving, as described above.
This allows the algorithm to learn and converge faster. MGD is outlined in Algorithm 1.
The number of candidates compared at each iteration is set by the parameter n. MGD
represents rankers by weight vectors. The ranker that MGD currently considers best is
referred to as the current best ranker, initially w0

0, and is updated according to the user
interactions, For each query issue, n candidate rankers are sampled from the unit sphere
around the current best ranker. These candidate rankers and the current best ranker create
rankings of documents that are subsequently multileaved and the resulting list is shown
to the user. Clicks from the user are then interpreted by the multileaving method to infer
a preference among the candidates. MGD allows multiple candidates to be preferred
over the current best; we consider the Mean-Winner update approach [14] as it is the
most robust; it updates the current best towards the mean of all preferred candidates. The
algorithm repeats this for every incoming query, yielding an unending adaptive process.

Probabilistic Multileave Gradient Descent (P-MGD) is introduced in this paper. The
novelty of this method comes from the usage of PM instead of TDM as its multileaving
method. TDM needs to assign each document to a team in order to infer preferences.
This limits the number of rankers that are compared at each interaction to the number of
displayed documents. PM on the other hand allows for a virtually unlimited number of



Algorithm 1 Multileave Gradient Descent: MGD(n, α, δ, w0
0)

1: for qt, t← 0..∞ do
2: l0 ← generate list(w0

t , qt) // ranking of current best
3: for i← 1...n do
4: ui ← sample unit vector()
5: wi

t ← w0
t + δui // create a candidate ranker

6: li ← generate list(wi
t, qt) // exploratory ranking

7: mt, tt ← multileave(l) // multileaving and teams
8: bt ← infer winners(tt, receive clicks(mt)) // set of winning candidates
9: w0

t+1 ← w0
t + α 1

|bt|
∑

j∈bt
uj // update, note that bt could be empty

rankers to be compared. The advantage of P-MGD is that it can learn faster by having n,
the number of candidates, in Algorithm 1 exceed the length of the result list.

Candidate Preselection (CPS), [5] unlike MGD, does not alter the number of candidates
compared per impression. It speeds up learning by reusing historical data to select
more promising candidates for DBGD. A set of candidates is generated by repeatedly
sampling the unit sphere around the current best uniformly. Several rounds are simulated
to eliminate all but one candidate. Each round starts by sampling two candidates between
which a preference is inferred with Probabilistic Interleave [3, PI]. The least preferred of
the two candidates is discarded; if no preference is found, one is discarded at random.
The remaining candidate is then used by DBGD.

4 Experimental setup
We describe our experiments, designed to answer the research questions posed in
Section 1.1 An experiment is based on a stream of independent queries submitted

Table 1. Overview of instantiations of CCM [2].

P (click = 1|R) P (stop = 1|R)

R 0 1 2 3 4 0 1 2 3 4

per 0.0 0.2 0.4 0.8 1.0 0.0 0.0 0.0 0.0 0.0
nav 0.05 0.3 0.5 0.7 0.95 0.2 0.3 0.5 0.7 0.9
inf 0.4 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5

by users interacting with the system that
is being trained. A result list of ten doc-
uments is displayed in response to each
query. Users interact with the list by click-
ing on zero or more documents. The
queries are sampled from several static
datasets, clicks are simulated using click
models. Four learning to rank datasets [8]
were selected to cover a diverse set of tasks: named page finding (NP2003, 150 queries),
topic distillation (TD2003, 50 queries), medical search (OHSUMED, 106 queries), and
general web search (MSLR-WEB10K, 10K queries). Each dataset consists of a set of fea-
ture vectors of length 45–136, encoding query document relations, and manual relevance
assessments for each document with respect to queries.

To simulate user interactions, we use the same setup as [14]. Clicks are produced by
a cascade click model (CCM) [2]. Users are assumed to examine documents from top to
bottom and click with probability P (click = 1|R), conditioned on relevance grade R.
The user then stops with probability P (stop = 1|R). Table 1 lists the instantiations of
CCM: a perfect (per) user with very reliable feedback, a navigational (nav) user looking
for a singly highly relevant document, and an informational (inf) user whose interactions

1 Our experimental code is open source and will be released upon publication of the paper.



Table 2. Offline score (NDCG) after 10,000 query impressions of each of the algorithms for the 3
instantiations of the CCM (see Table 1). Bold values indicate maximum performance per dataset
and click model. Statistically significant improvements (losses) over the DBGD and TD-MGD
baseline are indicated by M(p < 0.05) and N(p < 0.01) (Oand H). Standard deviation in brackets.

PI-DBGD TD-MGD-9c CPS P-MGD-9c P-MGD-99c

pe
rf

ec
t

TD2003 0.330 (0.07) 0.327 (0.07) 0.288 (0.10) HH 0.330 (0.07) 0.334 (0.07)

OHSUMED 0.452 (0.06) 0.443 (0.06) 0.395 (0.06) HH 0.459 (0.07) 0.459 (0.07)

NP2003 0.718 (0.08) 0.727 (0.08) 0.702 (0.09) O 0.730 (0.08) 0.732 (0.08)

MSLR-WEB10K 0.318 (0.03) 0.351 (0.03) 0.246 (0.03) HH 0.325 (0.03) H 0.320 (0.03) H

na
vi

ga
tio

na
l TD2003 0.319 (0.08) 0.322 (0.07) 0.271 (0.10) HH 0.324 (0.08) 0.332 (0.07)

OHSUMED 0.436 (0.06) 0.446 (0.06) 0.389 (0.07) HH 0.435 (0.06) 0.431 (0.06) O

NP2003 0.706 (0.08) 0.721 (0.08) 0.702 (0.08) 0.719 (0.08) 0.723 (0.08)

MSLR-WEB10K 0.305 (0.03) 0.320 (0.03) 0.238 (0.03) HH 0.309 (0.03) H 0.308 (0.03) H

in
fo

rm
at

io
na

l TD2003 0.288 (0.09) 0.323 (0.08) 0.233 (0.10) HH 0.310 (0.09) 0.313 (0.10) M

OHSUMED 0.421 (0.06) 0.440 (0.06) 0.389 (0.07) HH 0.441 (0.07) M 0.434 (0.07)

NP2003 0.679 (0.08) 0.706 (0.08) 0.665 (0.09) H 0.704 (0.08) M 0.707 (0.08) N

MSLR-WEB10K 0.283 (0.03) 0.311 (0.03) 0.213 (0.03) HH 0.303 (0.03) NO 0.306 (0.03) N

are noisier. Runs consist of 10,000 queries, exceeding the 1,000 queries used in previous
work. Performance is evaluated offline and online. Offline NDCG is measured on held
out data and represents the quality of the trained ranker. Online performance reflects the
user experience during training and is measured by the discounted cumulative NDCG of
the result lists shown to the user. A discount factor γ = 0.9995 was chosen so that queries
beyond a horizon of 10,000 impressions have < 1% impact. Two tailed Student’s t-tests
are used for significance testing. All experiments ran 125 times (5 folds, 25 repetitions),
results are averaged. Parameters come from previous work: w0 = 0, α = 0.01, δ = 1.
We use two baselines: (PI-DBGD) – DBGD with Probabilistic Interleaving (PI), PI was
chosen for a fair comparison with PM methods; and (TD-MGD-9c) – MGD with Team
Draft Multileaving (TDM), the number of candidate rankers is n = 9 so that each ranker
is represented exactly once in the result list. Furthermore, two additional algorithms are
compared to the baselines: (P-MGD-n) – MGD with Probabilistic Multileaving, this
algorithm is run with n = 9 and n = 99 candidates; the former matches the number of
candidates with our TD-MGD baseline, the latter exploits the large number of candidates
that PM enables; and (CPS) is run with the settings reported as best in [3]: η = 6
candidates, ζ = 10 rounds, history length λ = 10; we use the unbiased version and
discard historic interactions without clicks.

5 Results and analysis
To investigate where P-MGD converges compared to TD-MGD and CPS RQ1, we
consider offline NDCG (Table 2). P-MGD performs significantly better than PI-DBGD
on all runs. When compared to TD-MGD, P-MGD performs significantly worse on some
datasets however no significant difference can be found for the majority of runs. Also, the
number of candidates in P-MGD does not seem to affect the offline performance strongly.
Surprisingly, the offline performance of CPS is significantly worse than TD-MGD and
DBGD on all runs except for four instances. Fig. 1 shows us that the offline performance
of CPS drops after an initial peak. It appears that CPS overfits on its historical data



Table 3. Online score (NDCG) after 10,000 query impressions of each of the algorithms for the 3
instantiations of the CCM (see Table 1). Notation is the same as that of Table 2.

PI-DBGD TD-MGD-9c CPS P-MGD-9c P-MGD-99c
pe

rf
ec

t

TD2003 499.1 ( 34.9) 557.0 ( 32.4) 503.7 ( 42.6) H 541.7 ( 32.3) NH 563.8 ( 30.8) N

OHSUMED 780.3 ( 28.0) 781.4 ( 21.5) 764.7 ( 31.5) HH 799.4 ( 25.6) NN 819.5 ( 23.8) NN

NP2003 1128.8 ( 27.9) 1244.9 ( 31.6) 1222.8 ( 33.7) NH 1169.3 ( 25.6) NH 1191.9 ( 24.9) NH

MSLR-WEB10K 532.4 ( 18.5) 548.6 ( 9.4) 480.8 ( 41.5) HH 548.3 ( 9.5) N 560.5 ( 6.9) NN

na
vi

ga
tio

na
l TD2003 453.5 ( 55.1) 514.9 ( 33.9) 469.7 ( 61.0) MH 480.6 ( 52.4) NH 499.9 ( 54.7) NO

OHSUMED 747.4 ( 73.6) 790.2 ( 27.3) 739.0 ( 72.4) H 776.1 ( 75.5) N 785.3 ( 75.6) N

NP2003 1055.5 (103.4) 1173.0 ( 32.3) 1206.7 (110.9) NN 1085.0 (101.4) MH 1114.0 (102.9) NH

MSLR-WEB10K 505.6 ( 22.9) 523.2 ( 12.3) 472.5 ( 54.9) HH 523.2 ( 47.5) N 538.8 ( 7.9) NN

in
fo

rm
at

io
na

l TD2003 340.2 ( 76.2) 432.5 ( 53.2) 443.2 ( 42.8) N 430.1 ( 37.1) N 490.4 ( 36.0) NN

OHSUMED 703.7 ( 49.8) 749.4 ( 73.4) 741.1 ( 31.6) N 764.5 ( 29.3) NM 789.6 ( 24.7) NN

NP2003 849.0 (150.0) 1023.7 (101.6) 1221.6 ( 27.5) NN 996.0 ( 47.4) NH 1119.5 ( 28.5) NN

MSLR-WEB10K 464.8 ( 56.0) 495.0 ( 46.8) 446.1 ( 46.6) HH 514.3 ( 16.9) NN 536.7 ( 48.6) NN

because of the effect of historical data on candidate sampling. The other methods sample
candidates uniformly, thus noisy false preferences are expected in all directions evenly.
Therefore, over time the method will still oscillate in the right direction. Conversely CPS
samples more candidates in the directions that historical data expects the best candidates
to be, causing the method not to oscillate but drift due to noise. The increased sensitivity
of CPS does not compensate for its bias in the long run.

To answer how the learning speed of P-MGD compares to our baselines RQ2 we
consider Fig. 1, which shows offline performance on the NP-2003 dataset with the
informational click model. P-MGD with 99 candidates and CPS perform substantially
better than TD-MGD and DBGD during the first 1,000 queries and it takes around 2,000
queries before TD-MGD to reach a similar level of performance. From the substantial
difference between P-MGD with 9 and 99 candidates, also present in the other runs, we
conclude that P-MGD with a large number of candidates has a greater learning speed.

To answer RQ3 we evaluate the user experience during learning. Table 3 displays
the results of our online experiments. In all runs the online performance of P-MGD
significantly improves over DBGD, again showing the positive effect of increasing the
number of candidates. Compared to TD-MGD, P-MGD performs significantly better
under the informational click model.We conclude that P-MGD is a definite improvement
over TD-MGD when clicks contain a large amount of noise. We attribute this difference
to the greater learning speed of P-MGD: fewer queries are required to find rankers of the
same performance as TD-MGD. Consequently, the rankings shown to users are better
during the learning process. When comparing CPS to TD-MGD we see no significant
improvements except on the informational and navigational runs on the NP-2003 dataset.
This is surprising as CPS was introduced as an alternative to DBGD that improves the
user experience. Thus, P-MGD is a better alternative of TD-MGD especially when clicks
are noisy; CPS does not offer reliable benefits when compared to TD-MGD.

6 Conclusions
We have introduced an extension of multileave gradient descent (MGD) that uses a
recently introduced multileaving method, probabilistic multileaving. Our extension,
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Fig. 1. Offline performance (NDCG) on the NP-2003 dataset for the informational click model.

probabilistic multileave gradient descent (P-MGD) marginalizes over document as-
signments in multileaved rankings. P-MGD has an increased sensitivity as it can infer
preferences over a large number of assignments. P-MGD can be run with a virtually
unlimited number of candidates. We have compared P-MGD with dueling bandit gradient
descent (DBGD), team-draft multileave gradient descent (TD-MGD), and candidate
preselection (CPS), both offline and online. CPS overfits in terms of offline performance;
we credit this behavior to bias introduced by the reuse of historical data. Online results
for CPS did not show a convincing benefit over TD-MGD either. In contrast, P-MGD
provides a significant improvement over DBGD and TD-MGD in terms of online per-
formance under noisy click models, without causing a significant decrease in offline
performance. Moreover, P-MGD shows a greater learning speed than TD-MGD and
DBGD, which becomes more evident as click model noise increases. Thus, P-MGD is a
robust alternative for TD-MGD that is better able to deal with interaction noise.
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