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ABSTRACT
Inverted indexes are vital in providing fast key-word-based search.
For every term in the document collection, a list of identifiers of
documents in which the term appears is stored, along with auxil-
iary information such as term frequency, and position offsets. While
very effective, inverted indexes have large memory requirements
for web-sized collections. Recently, the concept of learned index
structures was introduced, where machine learned models replace
common index structures such as B-tree-indexes, hash-indexes, and
bloom-filters. These learned index structures require less memory,
and can be computationally much faster than their traditional coun-
terparts. In this paper, we consider whether such models may be
applied to conjunctive Boolean querying. First, we investigate how
a learnedmodel can replace document postings of an inverted index,
and then evaluate the compromises such an approach might have.
Second,we evaluate the potential gains that can be achieved in terms
of memory requirements. Our work shows that learnedmodels have
great potential in inverted indexing, and this direction seems to be
a promising area for future research.

1 INTRODUCTION
Search engines make large collections of documents accessible to
users,whogenerally search fordocumentsbyposingkey-wordbased
queries. For thebest user experience, theuser shouldbepresented rel-
evant results as quickly as possible. Inverted indexes allow systems
to match documents with key-words in an efficient manner [15, 22].
Due to their scalability, inverted indexes formthebasisofmost search
engines that cover large document collections. They store inverted
lists of the terms contained in each document in the collection; for
a given term, an inverted list stores a list with all the documents
in which it occurs. An important search operation performed on
these lists is conjunctive Boolean intersection, as it is routinely used
in search engines for early stage retrieval [1, 4, 8] and for vertical
search tasks such as product or job search [19]. Boolean queries are
computed by intersecting the inverted lists of the query terms [7],
and the result set typically includes documents that contain all of
the query terms, including the stopwords.

Despite consistent advances in compressed index representations
over the years [11, 16, 20], the cost of storing all relevant data (such
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as stopword data) to effectively search sizable collections can be a
bottleneck in scaling to increasingly larger collections. One inter-
esting alternative is to use a bitvector to store the document vector
of high frequency terms [9, 14]. However, there are limits to what
compressing exact representations can achieve.
Recently the idea of learned index structures has been proposed

by Kraska et al. [10]. Here, machine learned models are optimized
to replace common index structures such as B-tree-indexes, hash-
indexes, and bloom-filters. The benefit of learned index structures
is that they require less memory and can be evaluated substantially
faster than their traditional counterparts.

In this study we examine whether learned index structures can be
used to reduce space in aBoolean search scenario, and investigate the
effect this would have on exactness guarantees an index can provide.
Using existing document collections, we estimate the space savings
that such an approach could achieve. Our results show that a learned
index structure approach has the potential to significantly reduce
storage requirements, and still provide performance guarantees. The
research questions we address are:

RQ1 Howmight learned indexes be used to support search based
on Boolean intersection?

RQ2 Would learned indexes provide any space benefits over current
compressed indexing schemes?

2 RELATEDWORK
Boolean intersection has been a fundamental component of infor-
mation retrieval systems for more than fifty years. In fact, early
search systems were entirely reliant on Boolean retrieval models [5].
In recent years, ranked retrieval models have becomemore impor-
tant, but Boolean operations are still a fundamental component in
a variety of search tasks [8, 19].
One important application of Boolean intersection is as either a

feature in multi-stage retrieval [12], or as a filtering stage in a multi-
stage pipeline [8, 17]. In all of these, the key idea is to apply expensive
feature extraction and machine learning models on a subset of the
most promising candidate documents to ensure early-precision is
maximized in the final result set [3, 21].

Machine learning has been applied in early-stage retrieval to pre-
dict the number of documents to pass through to the next stage [6]
and even to predictwhich top-k processing algorithm should be used
perquery [13].But in current cascadedandmulti-stage retrievalmod-
els the use of machine learning algorithms is often deferred to later
stages of the retrieval process as traditionally such algorithms were
not optimized for efficiency. The recent introduction of learned index
structures by Kraska et al. [10] is changing that perception. They
have shown that common index structures such as B-tree-indexes,
hash-indexes, and Bloom-filters can be replaced by learned models,
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Algorithm 1 The Exhaustive Iterative Approach.
1: q1,...,qn← receive_query
2: r←[]
3: for d ∈D do
4: if ∀qi ∈ [q1,...,qn ], f (qi ,d)=1 then
5: append(r ,d)
6: return r

Algorithm 2 The Two-Tiered Approach.
1: q1,...,qn← receive_query
2: l1,...,ln← truncated_lists_for_terms(q1,...,qn )
3: L←

⋃n
i=1li

4: r←[]
5: for d ∈L do
6: if ∀qi ∈ [q1,...,qn ], f (qi ,d)=1 then
7: append(r ,d)
8: return r

Algorithm 3 The Block Based Approach.
1: q1,...,qn← receive_query
2: b1,...,bn←block_lists_for_terms(q1,...,qn )
3: B←

⋂n
i=1bi

4: r←[]
5: for b ∈B do
6: for d ∈document_range_of_block(b) do
7: if ∀qi ∈ [q1,...,qn ], f (qi ,d)=1 then
8: append(r ,d)
9: return r

while bringing both gains inmemory and computational costs.More-
over, by applying recursivemodels a learned index structure can fall-
back on traditional structures for sub-cases where a learned model
performs poorly. Consequently, learned models can provide the
same correctness guarantees as their traditional counterparts. Given
the potential advantages of learned models, we explore this line of
research in a constrained early-stage retrieval scenario – specifi-
cally, can a learned indexing representation be used for conjunctive
Boolean retrieval? If so, what are the performance implications?

3 APPLICABILITY FOR INVERTED INDEXES
In this section we answerRQ1: in what ways a learned index model
can support Boolean intersection based search.

We will consider models that act as learned Bloom-filters because
they have commonly been applied to conjuctive Boolean problems.
Moreover, Kraska et al. [10] have shown that they can be applied to
sizeable datasets and outperform traditional Bloom-filters in both
speed andmemory requirements. However, learned index structures
have only been optimized for tasks involving a single set [10]. In
contrast, each document in an inverted index could be seen as an
individual set, thus making the problem substantially more complex.
For this study we will assume that a function f (t ,d) ∈ {0,1} can

be learned perfectly so that for a term t and document d :

f (t ,d)=

{
1 t ∈d,

0 t <d .
(1)

In theory any deep neural network that is expressive enough could
be optimized for an entire document collection without any errors.
In practice, such a model has to be relatively sizeable and requires
a very long period of optimization. Therefore, one may choose to
compromise some correctness for practical reasons. In this study,
we will not discuss the specifics of such a model or its optimization
and instead focus on how it could be applied.

3.1 Exhaustive Iterative Approach
A straightforward approach to conjunctive Boolean functions using
the model f would be to iterate over the entire document collection.
Algorithm 1 displays what this approach could look like. It is clear
that, per query, there is ahuge computational cost proportional to the
number of documents in the collection.However, this approach guar-
antees the correct results for conjunctive Boolean queries. Moreover,
the only storage it requires is for the model f , thus it can provide the
biggest gains in memory by completely replacing an inverted index.
In practice this approach will most likely be avoided because of its
computational costs, yet it provides an interesting example of how
the storage requirements could be completely minimized.

3.2 Two-Tiered Approach
The previous approach iterated over all documents in the collection,
which has high computational costs. An existingmethod of speeding
upretrieval is touse two-tier retrieval [18].Herean index isdivided in
twopartitions, oneofwhich is of smaller size onwhichqueries canbe
pre-processed quickly.We also propose a two-tiered approachwhere
an inverted index is split into a smaller partition with truncated lists,
and a larger partition with the remainder of the lists.Wewill assume
that the size of the second partition is not important, but that the
goal is to minimize the size of the first partition. The first partition
consists of the inverted lists of each term but truncated to length k ,
the remainder of each list appears in the second partition. We will
notmake any assumptions aboutwhich parts of the lists are included
in the truncations. Then Algorithm 2 displays how one may use the
learned model f to search through the first partition. This approach
onlyhas to iterate over the intersectionof the truncated lists, thus it is
computationallymoreefficient thanthepreviousapproach.However,
to retrieve all results the truncated lists will not always suffice. If
all terms in a query have a document frequency greater than k then
results may be missing after passing over the first partition. At this
point, the algorithm could fallback by also considering the second
partition. Conversely, correctness is guaranteed if at least one query-
term appears in k or less documents. By applying the learned model
f there is no need to use the second partition here. Thus for queries
with at least one infrequent term the first partition and learned
model are guaranteed to provide correct results. This approach may
be particularly advantageous when the smaller size allows the first
partition to fit in memory components with faster access.

3.3 Block Based Approach
Lastly, we introduce an approach inspired by existing signature files
and partitioned approaches [8] in Algorithm 3. A document collec-
tionmaybe partitioned intomultiple blocks, each containing a subset
of documents. For every term, a list indicating the blocks in which
their matching documents appear is stored. Then the intersection



Figure 1: Top: the distribution of document frequencies. Bottom: the minimum number of terms that appear at different
fractions of the compressed inverted index. From left to right: results for the Robust, GOV2 and ClueWeb collections.
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of the lists for every query-term provides restricted ranges in which
results for a conjunctive Boolean query appear. Finally, these ranges
can be traversed with the learned model f to retrieve all documents
for the conjunctive Boolean query. The computational costs of this
approach are limited by the size of the partitions. Reductions in
storage can be achieved since only a list of partitions has to be stored.
We note that for very infrequent terms, traditional inverted lists may
still be stored resulting in hybrid presentations [14]. In addition to
the storage gains, this approach still guarantees correct results for
conjunctive Boolean queries.
Finally, we conclude our answer toRQ1: there are several meth-

ods by which a learned index structure could be applied to Boolean
intersection. These approaches all make different tradeoffs between
computational costs during retrieval and gains in the amount of
storage space required. It may depend on the requirements of an
application which approach is the most suitable.

4 ESTIMATING POTENTIALGAINS
In the previous section we proposed several approaches to support
conjunctive Boolean searchwith learned index structures. In this sec-
tion we will answerRQ2 by estimating the gains these approaches
could make in terms of storage requirements.

For this analysiswewill consider the two-tiered approach detailed
in Section 3.2. This approach was chosen because it appears to pro-
duce the least storage gains, thus serving as a conservative bound,
and, furthermore, for this approach we can accurately estimate the
tradeoffs it makes. Three commonly used TREC document collec-
tions are considered for this study: Robust 2005 (Newswire), GOV2,
and ClueWeb09B.1 Figure 1 displays the distribution of document-
frequencies in each collection. Additionally, to see the varying stor-
age terms require, it also shows the minimum number of terms that
can be stored in different fractions of the compressed inverted index.
For this study we used OptPFOR compression [11]. From this figure
it is clear that very few terms have a high document-frequency but
that they can require a considerable percentage of total storage cost
in the inverted index. For instance, in every collection we see that
less than one percent of the terms take up forty percent of storage.

To estimate the gains of the two-tiered approach we will use trun-
cated lists of afixed sizek in thefirst partition. Thusonly termswith a

1https://trec.nist.gov

higher document-frequency than k will have truncated lists. In addi-
tion this affects the optimization of f as it only has to consider terms
forwhichnot all documents are stored. Thepotential gains in storage
of the first partition are then estimated as follows: First, we compute
the amount of storage gained by removing the inverted lists of re-
placed terms fromthe inverted index.Second,weestimate thestorage
space required by a truncated list of lengthk ; we take the average size
of compressed lists of the same length in the complete compressed in-
verted index [11]. Thenweestimate the size of the learnedmodel f as
linearly proportional to the vocabulary and collection size: |T | · |D | ·s ,
wheres is anunknownpositive value. Lastly,we expect that for every
term a bit has to be stored to indicate whether it has been replaced
or not. By summing all these values we get the following formula
for the expected gain in storage; with R as the set of terms to replace,
the complete set of termsT , and complete set of documentsD:

gain(R,s)=[∑
t ∈R

size.full.list(t)−size.trunc.list(k)

]
−(|R |+ |D |)·s−|T |.

(2)

To account for the unknownvalue of swecompute a lower andupper
bound by varying its value. For the upper bound, we estimate no
cost from the model: s=0, this is the most gain this approach could
potentially have. The lower bound is estimated with s=512 bits, this
is equivalent to the cost of storing a compressed 128 unit embedding
for every document and for every term as well. We expect this to be
the worst-case scenario in terms of model size.

Figure 2 displays the estimated bounds for varying truncated list
sizes; in addition, it also shows the number of terms that have to be
replaced. For instance, on the Robust collection, a gain of at least 40%
can be achieved by using a truncated list of 4,000 and replacing less
than 4,000 term lists. Interestingly, the number of terms to replace
grows exponentially as the truncated list size decreases,while the po-
tential gain increases at a much smaller rate. This further shows that
the highest gains can be made by replacing the most frequent terms.
Moreover, replacing extremely rare terms could even require more
storage depending on the model costs. Regardless, we see that even
with high model costs substantial gains are possible by choosing an
appropriate truncated list size.
Lastly, on a set of 40,000 queries from the TREC Million Query

Track [2], we verified the number of queries with results that can
be guaranteed correct on the first partition.With a learned model

https://trec.nist.gov


Figure 2: Top: The estimated upper and lower bounds in terms of storage space required. Bottom: The number of terms that
need to be replaced. From left to right: results for the Robust, GOV2 and ClueWeb09B collections.
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Figure 3: Percentage of queries with guaranteed correct results in the first-tier by varying truncated list sizes. From left to right:
Robust, GOV2 and ClueWeb09B.
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a query is guaranteed correct if the list of at least one term is not
truncated. In contrast, without a learned model all query-terms
need complete lists for guaranteed correct results. Figure 3 displays
the difference between the two-tiered approach with and without
the learned model. As expected, the learned model considerably
increases the correctness of the results in the first stage.

Finally, we answerRQ2 positively: our results show that even the
most storage inefficient approachwith highmodel costs can produce
substantial reductions in storage requirements.

5 CONCLUSION
In this study, we have explored how search based on Boolean inter-
section may benefit from the usage of learned index structures. We
have proposed several approaches bywhich a learnedmodel can pro-
duce substantial reductions in storage requirements. Each approach
makes a tradeoff between storage requirements and computational
costs. Our results show that even conservative estimates on the po-
tential gains w.r.t. space benefits are considerable. We expect that
combining learned index structures with inverted indexes will be
a fruitful research direction in the near future.
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