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ABSTRACT
Learning to Rank has traditionally considered settings where given
the relevance information of objects, the desired order in which to
rank the objects is clear. However, with today’s large variety of users
and layouts this is not always the case. In this paper, we consider so-
called complex ranking settings where it is not clear what should be
displayed, that is, what the relevant items are, and how they should
be displayed, that is, where themost relevant items should be placed.
These ranking settings are complex as they involve both traditional
ranking and inferring the best display order. Existing learning to
rank methods cannot handle such complex ranking settings as they
assume that the display order is known beforehand. To address this
gap we introduce a novel Deep Reinforcement Learning method
that is capable of learning complex rankings, both the layout and
the best ranking given the layout, from weak reward signals. Our
proposed method does so by selecting documents and positions se-
quentially, hence it ranks both the documents and positions, which
is why we call it the Double-Rank Model (DRM). Our experiments
show that DRM outperforms all existing methods in complex rank-
ing settings, thus it leads to substantial ranking improvements in
cases where the display order is not known a priori.
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1 INTRODUCTION
Learning to Rank (LTR) has played a vital role in the field of
Information Retrieval (IR). It allows search engines to provide users
with documents relevant to their search task by carefully combining
a large number of ranking signals [17]. Similarly, it is an important
part of many recommender systems [13], enables smart advertise-
ment placement [26], and is used for effective product search [14].
Over time, LTR has spread to many cases beyond the traditional
web search setting, and so have the ways in which users interact
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with rankings. Besides the well-known ten blue links result presen-
tation format, a myriad of different layouts are now prevalent on the
web. For comparison, consider the traditional layout in Fig. 1a; eye-
tracking studies have demonstrated that users look at the top left
of such a layout first, before making their way down the list, the so-
called “F-shape” or “golden triangle” [10]. Because of this top-down
bias, a more relevant document should be placed higher; corre-
spondingly, LTR methods have always relied on this assumption.
In contrast, Fig. 1 displays three examples of layouts where the

top-down traversal assumption does not necessarily hold. First,
Fig. 1b displays a common layout for search in online stores; here,
products are presented in a grid so that their name, thumbnail, price
and rating can be displayed compactly and navigational panels are
displayed on the left-hand side. Depending on their information
need, users are often drawn to the navigational panel, especially
when confronted with a large number of results; users are also often
drawn to the thumbnail photos that represent products, which they
do not seem to scan in a left-to-right, top-to-bottom fashion [3, 24].
A typical video recommendation result page is shown in Fig. 1c.
Often, video thumbnails are displayed in horizontal strips where
each strip shows videos of the same category. This allows a large
number of videos to be shown while still having a structured pre-
sentation. Users of such result displays tend to have “T-shaped”
fixation patterns [31, 32], where users view the top-center area
first, the top-left area second, and the center-center area third [18].
Lastly, Fig. 1d shows common advertisement placements on web
sites; ad placement areas vary greatly [21], but common ones are
top, left rail and right rail, with a mix of shapes. While little is
known about interaction patterns with ads on web sites, studies on
ads placed on web search engine result pages show that top and
right rail ads receive a higher fraction of visual attention [2], as
users have a bias against sponsored links [11]. It is very hard to
anticipate where an advertisement would be the most effective as
it depends on the overall content of the website.
The examples of result presentation layouts given in Fig. 1 are

by no means an exhaustive list; moreover, new layouts and search
settings continue to be introduced. The examples show that in some
cases the top-down bias assumption of traditional LTR is misguided.
Consequently, if there is a mismatch between the assumed preferred
display order and the users’ preferences, the expected user expe-
rience will be degraded. If the wrong display order is assumed then
even a ranker that perfectly predicts the relevance order may not
display the most relevant document on the ideal position. We call
settings where the ideal display order is unclear a priori complex
ranking settings, because they involve a double algorithmic problem:
both traditional relevance ranking as well as finding the best way to
position the ranking. Thus, in these settings the task is both to infer
the user preferred relevance order – what documents does the user
want to see? – as well as the user preferred display order – in what
order will the user consider the display positions? User behavior
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(a) A traditional ten blue links layout.
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(d) An advertisement layout.
Figure 1: Examples of different ranking settings and result presentations.

studies can help address this problem; for instance, the eye tracking
studies listed above can reveal how users examine a layout and thus
infer the preferred display order. Such user studies are expensive
to perform at scale and it may be hard to find participants that
represent the target user base well. Moreover, since layouts change
often the results of previous studies may rapidly become obsolete.
As an alternative we investigate whether ranking in complex

ranking settings can be learned from user interactions. We propose
to use Deep Reinforcement Learning (RL), to infer a display order
that best satisfies users, e.g., to infer that the most relevant doc-
ument is to be displayed in the top-center in the case of a result
layout as in Fig. 1c. We introduce two approaches: (1) a standard
GRU [5] that implicitly learns the preferred display order, and (2) a
novel method that explicitly models a preference in display posi-
tions. We call the latter method the Double-Rank Model (DRM)
since it learns how to rank the display positions and with which
documents to fill those positions. Our experiments on three large
publicly available LTR datasets show that only DRM is capable of
successfully addressing complex ranking settings while all other
methods are unable to break from the top-down assumption. As
a result, DRM achieves the highest retrieval performance in all of
the cases where the traditional top-down assumption does not hold
while matching the state-of-the-art when the assumption does hold.

In this paper the following research questions are addressed:
RQ1 Can existing ranking methods handle complex ranking set-

tings?
RQ2 Does DRM outperform existing methods in complex ranking

settings?

2 PROBLEM SETTING
The idea of a complex ranking setting was introduced in Section 1;
this section will formalize the concept and explain why traditional
LTR methods are unable to deal with them.

2.1 Ranking settings
The core task in LTR is to order a set of documents to maximize the
ease by which a user can perform their search task. Here we assume
the user has a preferred order in which they consider the available
documents D = {d1, . . .dn }. This order depends only on the docu-
ments and the user’s search task and thus we call this the preferred
relevance order. Furthermore, documents are displayed to the user
in a layout that has several positions for displaying them. We will
assume that a layout has k display positions P = ⟨p1, . . . ,pk ⟩, at
each of which a single document can be presented. The user con-
siders the display positions one by one, and is expected to do this
in a certain order, i.e., subject to a certain position bias [12]. We
interpret this order in display positions as the user’s preferred dis-
play order. Thus, in order to provide the optimal user experience,
the most relevant document should be displayed in the position
considered first, and so forth. In other words, documents must be
displayed to the user so that there is a correspondence between
the preferred relevance order and the display order. We call such a
combination of a preferred relevance order and a preferred display
order a ranking setting, and formally define it as follows:

Definition 2.1. A ranking setting consists of a set of documents
D = {d1, . . . ,dn }, an ordered set of positions P = ⟨p1, . . . ,pk ⟩ as
well as user preferences for positions (>pos) and for documents
(>doc). The user has a preferred relevance order, so that all docu-
ments can be ordered according to their preference:

di >doc dj >doc · · · >doc dl . (1)
Similarly, positions can be ordered to their preferred display order :

pi >pos pj >pos · · · >pos pl . (2)
Lastly, a ranking setting has an ideal ranking R = [di , . . . ,dj ], this
is an ordering of the k most preferred documents aligned with



preference between display positions:
∀0 < i, j ≤ k, Ri >doc Rj ↔ pi >pos pj . (3)

Thus, R places the i-th most preferred document on the i-th most
preferred position, for the top k documents. Note that the ideal
ranking R is not necessarily the same as the preferred relevance
order. While the most relevant document is always on the first
position in the relevance order, its position in R depends on the
preferred display order.

2.2 Simple ranking settings
We define simple and complex ranking settings based on whether
the display order is known a priori. In cases where it is known, the
mismatch between the relevance order and the display order can
always be avoided:

Definition 2.2. A simple ranking setting is a ranking settingwhere
the user’s preferred display order is known a priori. As a result, the
ordered set of display positions P = ⟨p1, . . . ,pk ⟩ can be ordered to
the users preferences so that:

∀0 < i, j ≤ k, i < j ↔ pi >pos pj . (4)
Consequently, the ideal ranking R is then always aligned with the
user preferred relevance order. Thus, if the document set D is ex-
tended with one document: D ′ = D∪{d ′}, then in a simple ranking
setting the ideal ranking for D ′, RD

′

, does not change the relative
ordering of documents in RD . Therefore, in a simple ranking setting
the ideal ranking of D ′ is always the ideal ranking of D with d ′

inserted at some position:

RD
′

= [RD1 ,R
D
2 , . . . ,R

D
i ,d

′,RDi+1,R
D
i+2, . . .]. (5)

The ten blue links layout is an example of a simple ranking setting,
where the top-down display order is well studied [10]. Correspond-
ingly, LTR has been very effective in this setting and has focused
on finding the user’s preferred relevance order. Most LTR methods
are based on functions that score documents independently and
then rank documents according to their scores. This works well
in simple ranking settings. For instance, consider four documents
with the preferences:

d1 >doc d2 >doc d3 >doc d4, (6)
and three display positions with the preferences:

p1 >pos p2 >pos p3. (7)

The two sets D = {d1,d3,d4} and D ′ = {d1,d2,d3,d4} have the
following ideal rankings:

RD = [d1,d3,d4], (8)

RD
′

= [d1,d2,d3]. (9)
Thus any scoring function f that correlates with the relevance
order in the sense that f (d1) > f (d2) > f (d3) > f (d4), will provide
the ideal rankings for both cases. While this is usually not acknowl-
edged explicitly, LTR methods have assumed that the ideal ranking
should be aligned with the user’s preferred relevance order.

2.3 Complex ranking settings
Section 1 discussed several prevalent settings where the preferred
display order is unclear. In these cases some performance is lost by
the mismatch between the relevance order and the display order,
as even when the most relevant documents are found they may not

be displayed in the most efficient manner. We define the complex
ranking setting by whether the display order is known a priori:

Definition 2.3. A ranking setting where the user preferred display
order is unknown a priori is called a complex ranking setting. There-
fore, for the document setsD andD ′ = D∪{d ′}, the ideal ranking of
D ′,RD

′

, may change the relative ordering of documents inD with re-
spect to the ideal ranking of D, RD , if the ranking setting is complex.

If we consider the same example as in Section 2.2 but change the
display order from (7) to

p2 >pos p1 >pos p3, (10)

then the ideal rankings for D = {d1,d3,d4} and D ′ = D ∪ {d2} are:

RD = [d3,d1,d4], (11)

RD
′

= [d2,d1,d3]. (12)
Unlike the simple ranking setting discussed in Section 2.2, there
is no function that can score documents independently and pro-
vide both ideal rankings: since such a function should provide
f (d3) > f (d1) in the case of D and f (d3) < f (d1) in the case of D ′.
A possible solution would be a binary document scoring function
that considers entire document set as one of its arguments, f (d,D),
thus allowing it to distinguish between D and D ′. However, the
computational costs of such a model that drops the document in-
dependence assumption would make it impossible to scale to any
practical usage [17].
Instead, in Section 5 we propose another approach, one where

the model sequentially selects a document and a position at which
to place it. Thus, in contrast with LTR in the simple ranking setting,
this method simultaneously learns both the relevance order and
the display order.

3 BACKGROUND
This section describes the RL concepts related to the novel methods
that are introduced in Section 4 and 5.

3.1 Markov decision processes
RL methods are used to solve decision problem that can be mod-
elled as Markov Decision Processess (MDPs) [25]. An MDP models
a sequential decision process where an agent executes a chosen
action at each time-step; the action will then affect the state of
the world in the subsequent time-step. An MDP model consists of
states S , actions A, transitions T , rewards R, and policies π . The
states S represents the set all possible states the process may be in
at any time-step. The actions A are the set of actions an agent can
take at every time-step; this choice is the only part of the MDP the
agent has direct control over. The transitions: after each time-step
the state changes according to the action taken. These transitions
are represented by the distribution T (st+1 | st ,at ). The rewards:
the reward function R provides the utility of taking an action in a
state: R(s,a). The policy: the actions of the agent are drawn from
the policy distribution: π (a | s).
The goal of an RL method is to find the policy that maximizes

the expected (discounted) reward in future time steps:
E[R(st ,at ) + γR(st+1,at+1)

+ γ 2R(st+2,at+2) + . . . | S,A,T ,R,π ],
(13)

where 0 ≤ γ ≤ 1 acts as a discount factor. Thus, the optimal policy
should account for both the immediate reward it receives from an



action but also the rewards it expects to receive from subsequent
steps. This means that planning is involved in the decision process,
which fits well with complex ranking settings where a relevant
document should not always be placed on the first position.

3.2 Model-free reinforcement learning
The methods we introduce in Section 4 and 5 are based on the Deep
Q-Network (DQN) [22]. DQN is a model free RLmethod; such meth-
ods do not explicitly model the transitions or rewards of the MDP.
Instead they work with Q-values, which represent the expected
value of a state-action pair: Q(s,a) [25]. The value of a state-action
pair is the immediate reward and the expected discounted future
reward:

Q(s,a) = R(s,a) + γ
∑
s ′

T (s ′ | s,a)max
a′

Q(s ′,a′). (14)

Thus, the Q-value of a state-action pair depends on the expected
value of the next state. Here, the maximum over the actions is taken
since the agent can be optimistic about its own action selection.
To allow for generalization, in deep Q-learning these values are
estimated by a model. Thus the weights θ should be found so that:

Q(s,a,θ ) = R(s,a) + γ
∑
s ′

T (s ′ | s,a)max
a′

Q(s ′,a′,θ ). (15)

Furthermore, DQN learns these values from experience, i.e., by exe-
cuting its policy and recording its experience. At each time-step this
gives a transition pair of the state s , action a, observed next state s ′,
and observed reward r : ⟨s,a, r , s ′⟩. Then θ can be updated towards:

Q(s,a,θ ) = r + γ max
a′

Q(s ′,a′,θ ). (16)

Over time the Q-values will converge on the true values with the
transitions T and reward function R implicitly learned. DQN uses
an experience replay buffer [16] that keeps a large number of past
transitions and updates on a batch sampled from this buffer. This
mitigates the sequential dependency between recent experiences.

Another issue is that the model is updated towards a target that is
predicted from its own weights, making the process very unstable.
As a solution, DQN uses an older version of the model to predict
future the Q-values from:

Q(s,a,θT ) = r + γ max
a′

Q(s ′,a′,θL), (17)

where θT is being trained and θL is a previous set of weights. Pe-
riodically the θT is transferred to θL : θL ← θT . As a result, the
weights are updated to a target that remains stationary for long
periods of time, stabilizing the learning process. Lastly, DQN is
prone to over estimate certain Q-values, because the max operation
is biased towards actions that are erroneously overestimated. As a
solution, Van Hasselt et al. [27] proposed Double DQN, where the
maximizing action is estimated on θT :

a′ = argmax
a

Q(s ′,a,θT ) (18)

Q(s,a,θT ) = r + γQ(s
′,a′,θL). (19)

Thus, an overestimated value in Q(s,a,θL) is less likely to be se-
lected, since θT and θL are somewhat independent.

The full Double DQN procedure is displayed in Algorithm 1. At
first, the Experience Replay buffer is empty (Line 2). Then the initial
policy is executed until the buffer is filled to containM past tran-
sitions (Line 6). Subsequently, the loss L is initialized (Line 8) and
several transitions are sampled from the replay buffer (Line 10). The
maximizing action according to the train-network θi is determined

Algorithm 1 Double DQN [22, 27] a Model-Free RL method.
1: Input: weights: θ0, replay size:M , transfer steps: N
2: E ← [] // initialize experience replay
3: θL ← θ0 // initialize label network
4: for i ∈ [1, 2, . . . , ] do
5: while |E | < M do
6: ⟨s,a, r , s ′⟩ ← execute_policy(θi )
7: E ← append(E, ⟨s,a, s ′, r ⟩)
8: L ← 0 // initialize loss function
9: for j ∈ [1, . . . , batch_size] do
10: ⟨s,a, r , s ′⟩ ← sample(E) // sample without replacement
11: a′ ← argmaxa Q(s ′,a,θi )
12: L ← L + (Q(s,a,θi ) − r − γQ(s

′,a′,θL))
2

13: θi+1 = gradient_descent_update(L)
14: if i mod N = 0 then
15: θL = θi

Algorithm 2 Sampling an episode with the baseline GRU model.
1: Dq ← receive_query // query and pre-selection of doc.
2: h0 ← 0 // initialize hidden state
3: R← []
4: for t ← 1 . . .k do
5: if coinflip with ϵ probability then
6: dt ← sample_document(Dq ) // explorative action
7: else
8: q← [0, . . . , 0] // initialize zero document score vector
9: for di ∈ Dq do
10: h′ ← GRU (ht−1, di )
11: qi ← Q(h′,di ,θ ) // estimate Q-value for doc. (Eq 30)
12: i ← argmax q // select doc. with highest q-value
13: Rt ← gather(Dq ,di ) // add doc. to SERP
14: Dq ← remove(Dq , dt ) // remove to prevent duplicates
15: ht = GRU (ht−1, dt ) // update (partial) SERP embedding
16: return R

(Line 11), and the loss is updated with the regression loss for the
current Q-value according to the train-network and the estimated
value according to the label-network:

(Q(s,a,θi ) − r − γQ(s
′,a′,θL))

2. (20)
The weights are updated according to the calculated loss (Line 13)
providing a newmodel θi+1. After N update steps the label network
is replaced with a copy of the current training network (Line 15).
When the Q-values have been learned, the estimated optimal policy
is derived by taking the maximizing action for each state.

4 REINFORCEMENT LEARNING TO RANK
This section introduces a baseline approach to the complex ranking
setting. First Section 4.1 discusses how LTR can be approached as
an RL problem, then Section 4.2 introduces a baseline approach to
the problem.

4.1 Ranking as a Markov decision process
LTR has been approached as an RL problem in the past [29, 30];
notably Xia et al. [30] used a policy gradient method for search
result diversification. The methods introduced in this paper are



based on Q-learning instead of policy gradients, however they also
approach ranking as an MDP.
The complex ranking setting is defined by the user preferred

display order being unknown a priori. As a result, it is impossible to
acquire labelled data, e.g., from human annotators. As an alternative,
we will use RL to learn from user interactions. First, the ranking
problem must be formalized as an MDP; as described in Section 3.1,
this means that states S , actionsA, transitionsT and rewards R have
to be specified. In this paper, we approach ranking as a sequential
decision problem, where every document in a ranking is seen as
a separate decision. Accordingly, the states S encode the query
information and all possible partial rankings; the initial state s0
represents the query and an empty ranking. The actions A consist
of the available documents Dq , with the exception of documents
already in st to prevent duplicate placement. The transitionsT are
deterministic between the partial rankings in S : adding a document
d ′ to st = (q, [d1, . . . ,di ]) transitions to st+1 = (q, [d1, . . . ,di ,d ′])
exclusively. Since no ranking in S exceeds the number of display
positions k , every episode lasts k steps and any state st at time step
t = k is an end-state. Lastly, the rewards R can be given at the
document-level or at the SERP-level; for a chosen discount function,
the document level reward is given by:

Rdoc(st ,at ) =
2rel(dat )−1

discount(t)
. (21)

The discount function can be chosen to match the Discounted Cu-
mulative Gain (DCG): discount(i) = log2(i + 1). However, other
discount functions can simulate different complex ranking settings.
The SERP-level reward is only given for actions that complete rank-
ings and simply sums the document-rewards in the ranking:

RSERP (st ,at ) =

{
0, t < k∑k
i=1 Rdoc(si ,ai ), t = k .

(22)

The SERP-level reward simulates challenging settings where the
reward cannot be broken down to the document level. Since every
episode is limited to k steps, future rewards are not discounted,
that is, γ = 1. So the aim of the policy is to maximize the expected
reward over the entire episode.

4.2 A baseline approach to complex ranking
In order to use Deep Q-Learning on the complex ranking setting,
a model that can estimate Q-values is required. This section will
introduce a baseline estimator, before Section 5 introduces a novel
model specialized for the complex ranking setting.

Since ranking is approached as a sequential process, a Recurrent
Neural Network (RNN) is used to encode the ranking so far and
estimate the value of adding the next document. Unlike previous
work [29, 30], we use a GRU [5] instead of a plain RNN. The ben-
efit of a GRU is that, similar to a Long Short-Term Memory Net-
work (LSTM) [9], it has a form of explicit memory, allowing it to
remember values over multiple iterations in the sequence. Com-
pared to the LSTM model a GRU has fewer parameters since it only
has an update gate vector zt and reset gate vector rt . The GRU
model can be formulated as follows:
zt = σ (Wzxt +Uzht−1 + bz ), (23)
rt = σ (Wrxt +Urht−1 + br ), (24)
ht = GRU (ht−1,xt ) (25)
= zt ◦ ht−1 + (1 − zt ) ◦ tanh(Whht−1 +Uh (rt ◦ ht−1) + bh ) (26)

where ◦ is the Hadamard product and the matricesW ,U and vectors
b are the weights to be optimized.

It would make sense to start the Q-value estimation by encoding
the query q. Unfortunately, no query-level features are available
in public LTR datasets (Section 6.1), thus we use zero initialization
for the hidden state:

h0 = 0. (27)
Then, for all the documents pre-selected for the queryDq an embed-
ding is made, with σ as the Rectified Linear Unit (ReLU) function
and document feature vector d:

d̂ = σ (Wdd + bd ). (28)
These document representations are shared for each step in the
process; if at time-step t the document d is selected the Q-value is
calculated as follows:

ht = GRU (ht−1, d̂), (29)

Q(st ,dt ,θ ) = v
T
q σ (Wqht + bq ) + uq , (30)

where the matrixWq , the vectors vq , bq and scalar uq are weights
to be optimized.

For clarity, Algorithm 2 describes the policy in detail; an epsilon
greedy approach is used to account for exploration, meaning that
at every time step a random action is performed with probability ϵ .
Initially the ranking R is empty (Line 3). For k iterations with prob-
ability ϵ a document is uniformly sampled (Line 6). Otherwise, the
Q-value for adding a document is computed for every available doc-
ument (Line 11). The document with the highest Q-value is added to
the SERP (Line 15) and removed from the set of available documents
(Line 14); this prevents it from appearing twice in R. Finally, after
R is completed, it is used by DQN (Algorithm 1); DQN interprets
every document placement as an action as described in Section 4.1.

Since this approach sequentially decides whether to place docu-
ments, it could learn a policy that does not place the most relevant
document first. Potentially, it could wait until the best display posi-
tion before placing it. The risk here is that if it saves more relevant
documents than positions left to fill, some of them will not be
displayed.

5 DOUBLE-RANK FOR COMPLEX RANKING
Section 4.2 used a standard GRU to sequentially choose what docu-
ments to place. In this section we introduce a method that sequen-
tially chooses a document and then a display position to place it in.
This approach explicitly models the duality of the complex ranking
setting: the preferred relevance order and the preference in display
positions. Because it ranks both documents and positions we call
it the Double-Rank Model (DRM). The key insight behind DRM is
that by choosing in what order to fill display positions, it can avoid
having to save a good document for a later position. Since it can
start placement at the most preferred position. DRM produces a list
of documents R and a list of positions I; the SERP is then created
by placing the documents in R according to I. Thus, the selection
of R encapsulates the inferred relevance order and the choice of I
captures the inferred display order.

5.1 Changing the MDP for DRM
The MDP as described in Section 4.1 has to be altered to accom-
modate the DRM approach. Firstly, the states S now include every
(partial) ranking of documents R and every (partial) matching set of



Algorithm 3 Sampling an episode with DRM.
1: Dq ← receive_query // query and pre-selection of doc.
2: P← [p1, . . . ,pk ] // available positions
3: h0 ← 0 // initialize hidden state
4: R, I← [], [] // initialize ranking and selected positions
5: for t ← 1 . . .k do
6: if coinflip with ϵ probability then
7: dt ← sample_document(Dq ) // explorative doc. action
8: else
9: // find the document with highest Q-value (Eq. 36)
10: Rt ← argmaxdi ∈Dq Q(ht−1,di ,θ )
11: Dq ← remove(Dq ,Rt ) // remove to prevent duplicates
12: if coinflip with ϵ probability then
13: pt ← sample_position(P) // explorative pos. action
14: else
15: // find the position with highest Q-value (Eq. 37)
16: Pt ← argmaxpi ∈PQ(ht−1,Rt ,pi ,θ )
17: P← remove(P, pt ) // make position unavailable
18: ht = GRU (ht−1, dt , pt ) // update (partial) SERP embedding
19: return R, I

positions I. We arbitrarily choose documents to be selected before
their positions, thus at the first state a document is added to R and
at the next state its position is added to I. The actionsA also consist
of either choosing a document or index depending on the state st . In
other words, if at time step t a document is chosen (at ∈ Dq ), then
at the next step its position is chosen (at+1 ∈ P ). Similarly, the tran-
sitions T are deterministic between the states: adding a document
d ′ transitions the state from st = (q, [d1, . . . ,di ], [p1, . . . ,pi ]) to
st+1 = (q, [d1, . . . ,di ,d ′], [p1, . . . ,pi ]) exclusively. Likewise, choos-
ing a position p′ transitions it from st = (q, [d1, . . ., di ], [p1, . . .,
pi−1]) to st+1 = (q, [d1, . . . ,di ], [p1, . . . ,pi−1,p′]). As a result, every
episode now consists of 2k steps. Finally, the reward function has
to be adapted slightly. For the document-level reward this becomes:

Rdoc (st ,at ) =

{
0, at ∈ Dq
2rel(dat−1 )−1
discount(pat )

at ∈ P ,
(31)

where pat is the selected position at t and dat−1 is the correspond-
ing document selected at the previous step. The discount here only
depends on the selected position and not on what time-step it was
placed there. The SERP-level reward becomes:

RSERP (st ,at ) =

{
0, t < 2k∑2k
i=1 Rdoc (si ,ai ), t = 2k .

(32)

While the reward function is different for the DRM, every SERP
receives the same total reward as in the baseline MDP (Section 4.1).

5.2 The Double-Rank model
With the DRM-MDP defined, we can now formulate the model that
estimates Q-values and thus learns the ranking policy. Similar to
the baseline model (Section 4.2), the DRM uses a GRU network to
encode the state. First the hidden state is initialized:

h0 = 0. (33)

Then an embedding for every document is made, given the docu-
ment feature vector d:

d̂ = σ (Wdd + bd ). (34)
Instead of alternating the input of the GRU with representations of
documents or positions, we only update the hidden state ht after
every position action. As an input the embedding of the previously
chosen document d̂t−1 and position pt are concatenated:

ht = GRU (ht−2, [̂dt−1,pt ]), (35)
where each position pt is represented by a unique integer.

The Q-values for document actions and position actions are com-
puted differently; both use the concatenation of the last hidden
state and the corresponding document embedding: [ht−1, d̂t ]. For
a document action the Q-value is calculated by:

Q(st ,dt ,θ ) = v
T
q σ (Wq [ht−1, d̂t ] + bq ) + uq , (36)

The computation for position action pt in the subsequent time-step
uses the same concatenation (now denoted as [ht−2, d̂t−1]):

Q(st ,pt ,θ ) = v
T
pt σ (Wp [ht−2, d̂t−1] + bp ) + upt , (37)

where the vectors vpt and scalar upt are unique for the position
pt . Since the number of positions is limited, we found it more ef-
fective to use unique weights for each of them, in terms of both
computational efficiency and learning speed.

The DRM policy is displayed in Algorithm 3; the document rank-
ing R and position ranking I are initialized (Line 4). Then for k
iterations a document and position are selected subsequently. First,
with an ϵ probability a random document is selected as an ex-
ploratory action (Line 7). Otherwise, the document with the highest
estimated Q-value is selected (Line 10). It is then removed from the
available setDq to prevent duplicate placement. Subsequently, with
an ϵ probability an exploratory position is selected (Line 13). Oth-
erwise, the position with the highest Q-value is selected (Line 16);
note that this value depends on the previously selected document.
The position is then made unavailable for subsequently selected
documents (Line 17). When k documents and positions have been
selected, the rankings R and I are passed to the DQN (Algorithm 1).
The user will be shown the documents in R in the display positions
according to I. Given a weak reward signal the choice of both R
and I can be optimized using DQN.

6 EXPERIMENTAL SETUP
This section describes the experiments that were run to answer the
research questions posed in Section 1.

6.1 Datasets
Our experiments are performed over three large publicly available
LTR datasets [4, 7, 23]; these are retired validations sets published
by large commercial search engines. Each dataset consists of queries,
documents and relevance labels. For every query there is a prese-
lection of documents; while queries are only represented by their
identifiers, feature representations and relevance labels are avail-
able for every preselected document-query pair. Relevance labels
range from not relevant (0) to perfectly relevant (5), and each dataset
is divided into training, validation and test partitions.

Firstly, we use the MSLR-WEB30k dataset released by Microsoft
in 2010 [23]. It consists of 30,000 queries obtained from a retired
labelling set of the Bing search engine. The dataset uses 136 features



Table 1: Three different display order preferences used
to simulate different complex ranking settings. The pi
indicate positions and the numerical values in the cells and
the intensity of the color indicate preferred display order.
E.g., in the first-bias preference, p1 is the most preferred
position and p10 the least preferred position.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

first-bias 1 2 3 4 5 6 7 8 9 10
center-bias 9 7 5 3 1 2 4 6 8 10
last-bias 10 9 8 7 6 5 4 3 2 1

to represent its documents; each query has 125 assessed documents
on average. This dataset is distributed in five folds for cross-fold
validation. Secondly, also in 2010, Yahoo! organized a public Learn-
ing to Rank Challenge [4] with an accompanying dataset. This set
consists of 709,877 documents encoded in 700 features and sam-
pled from query logs of the Yahoo! search engine, spanning 29,921
queries. Thirdly, in 2016 the Istella search engine released a LTR
dataset to the public [7]. It is the largest dataset to date with a total
of 33,118 queries, an average of 315 documents per query and 220
features. Only a training and test partition were made available for
this dataset; for parameter tuning we sampled 9,700 queries from
the training partition and used them as a validation set.

6.2 Simulating complex ranking settings
Our experiments are based around a stream of queries, for every
received query the system presents the user a SERP generated by
the policy (Algorithm 2 or 3). The SERP is displayed to the user in
a k = 10 position display. The system then receives a reward signal
from the user, indicative of their satisfaction. These interactions
are passed to the DQN (Algorithm 1) which stores them in the ex-
perience replay buffer. When the buffer is sufficiently full, a batch
of interactions is sampled and the model is updated accordingly.
The stream of queries is simulated by uniformly sampling queries
from the datasets. The reward signal is simulated by the function
described in Section 4.1 or 5.1, where the discount function is varied
to simulate different complex ranking settings. All of the discount
functions we use are based on Discounted Cumulative Gain (DCG);
we assign every position pi an integer index and then define:

discount(pi ) = log2(pi + 1). (38)
Here, the integerpi is the index the position has in the user preferred
display order. Thus, the first observed position will be discounted
by discount(1), and so on. Then we use three display orders as dis-
played in Table 1. First, first-bias simulates a user who considers
positions in the assumed order, resulting in a standard DCG reward
signal. Then center-bias simulates a user who considers the center
position first, e.g., as can happen in a horizontal display. Lastly,
we consider the last-bias preference order, where the last position
is considered first, this simulates the worst-case scenario as the
display order is the furthest removed from the assumed order.

Note that no method is initially aware of what the display order
is; the only indirect indication of the preferred order comes from
the received rewards.
For evaluation we use the mean normalized reward, which we

call the Permuted Normalized DCG (P-NDCG). This is the received

reward divided by the maximum possible reward:

P-NDCG =

∑k
t=1 R(st ,at )

max[a′0, ...,a′k ]
∑k
t=1 R(s

′
ta
′
t )
. (39)

This reward can be seen as NDCG where the discount indices have
been permuted. Note that in the first-bias case, P-NDCG is the equiv-
alent of regular NDCG. Lastly, to evaluate the estimated optimal
behavior, P-NDCG is computed without exploration: ϵ = 0.

6.3 Experimental runs
Runs were created with DRM (Section 5), the baseline GRU (Sec-
tion 4), and the MDP-DIV model [30]. The latter model was intro-
duced for search result diversification; however, by changing the
reward function it can be applied to the complex ranking setting.
Runs were performed on the three datasets, each with one of the
three reward signals described in Section 6.2, both at the document-
level and at the SERP-level. Thus there are 27 dataset-model-reward
combinations; five runs were performed for each combination from
which the mean results are reported. Significance testing was done
using a single-tailed T-test.
Parameter tuning was done on the validation sets; the learning

rate was tuned between 10−2 and 10−5 per dataset; models were
updated with early stopping up to 200,000 steps. The other param-
eters were the same for each dataset: the experience replay buffer
size was 5,000; the number of steps between transfers was set to
5,000; the exploration degree ϵ was initialized at 1.0 and degraded to
0.05 over 30,000 iterations. The weights were chosen so that every
document representation d̂ of size 128, the hidden states ht of size
256, and the vectors vq and vp have size 128. Gradient descent was
performed using Adam optimization with batches of 64 episodes.
All transitions sampled from an episode are included in a batch for
computational efficiency. Our implementation, including parameter
settings, are publicly available to ensure reproducibility.

7 RESULTS
In this section we answer the research questions posed in Section 1
by discussing the results from our experiments. As a reminder,
these questions are: do existing methods perform well in complex
ranking settings (RQ1); and does DRM outperform them in these
settings (RQ2). Additionally, we also compare the performance of
methods under a document-level and SERP-level reward.
Our main results are displayed in Table 2, which shows the av-

erage P-NDCG for each method and reward signal. Figure 2 also
displays the average relevance label per position for a GRU baseline
model and DRM on the Istella dataset under SERP-level rewards.

7.1 Baseline performance
First, we answer RQ1 by looking at the performance of the MDP-
DIV and GRU baseline methods. Table 2 shows that across all
datasets there is a substantial difference in performance between
the ranking settings. As expected, both MDP-DIV and GRU per-
form best in the first-bias settings, where their assumed display
order matches the preferred order in the setting. Conversely, perfor-
mance is significantly worse in the center-bias and last-bias settings.
On the Yahoo and Istella datasets this difference can go up to 0.1
P-NDCG, under both document-level and SERP-level rewards. This
shows that the performance of both baselines is heavily affected



Table 2: Average normalized rewards for two baseline models and DRM under different complex ranking settings and reward
signals. Bold values indicate the best performance per dataset and setting. Significant positive differences are indicated by
▲(p < 0.01) and △(p < 0.05), significant negative differences by ▼and ▽, respectively. In the table, the first symbol indicates the
significance of a difference between DRM and MDP-DIV, the second between DRM and GRU.

MSLR Yahoo Istella

first-bias center-bias last-bias first-bias center-bias last-bias first-bias center-bias last-bias

Document-Level Reward

MDP-DIV 0.423 (0.002) 0.360 (0.004) 0.339 (0.003) 0.716 (0.004) 0.620 (0.003) 0.587 (0.004) 0.579 (0.003) 0.451 (0.002) 0.399 (0.002)

GRU 0.433 (0.012) 0.388 (0.002) 0.369 (0.003) 0.722 (0.004) 0.656 (0.001) 0.600 (0.002) 0.623 (0.002) 0.532 (0.003) 0.444 (0.002)

DRM 0.444 (0.004)▲− 0.444 (0.005)▲▲ 0.445 (0.004)▲▲ 0.728 (0.002)▲▲ 0.721 (0.001)▲▲ 0.725 (0.001)▲▲ 0.627 (0.001)▲△ 0.624 (0.003)▲▲ 0.627 (0.004)▲▲

SERP-Level Reward

MDP-DIV 0.414 (0.004) 0.360 (0.006) 0.338 (0.003) 0.702 (0.002) 0.611 (0.002) 0.584 (0.000) 0.549 (0.010) 0.438 (0.005) 0.389 (0.005)

GRU 0.402 (0.004) 0.367 (0.015) 0.344 (0.003) 0.708 (0.003) 0.625 (0.004) 0.599 (0.003) 0.522 (0.007) 0 .449 (0.008) 0.422 (0.004)

DRM 0.395 (0.003)▼▼ 0.390 (0.016)▲△ 0.384 (0.013)▲▲ 0.669 (0.016)▼▼ 0.635 (0.004)▲▲ 0.647 (0.012)▲▲ 0.533 (0.010)▲▽ 0.532 (0.011)▲▲ 0.534 (0.007)▲▲

by the preferred display order, and in situations where this order
is unknown this can lead to a substantial drop in performance.
To better understand the drop in performance of the GRU base-

line, we look at Figure 2a. Here we see that the reward signals do
affect the ranking behaviour the GRU learns. For instance, in the
center-bias case the most preferred display positions (p5) has the
highest average relevance label. However, the complete preferred
display order does not seem to be inferred correctly. Notably, the
relevance on the first three positions (p1,p2,p3) is compromised,
i.e., position p3 is preferred over p8 but has a much lower average
relevance label. It seems that GRU intentionally ranks worse at
the start of the ranking so that the most relevant documents are
not placed too early. This behavior places the most relevant doc-
ument on the most preferred position, but sacrifices the relevance
at earlier positions. Thus, the GRU baseline is unable to rank for
the center-bias display order. Moreover, in the last-bias setting p3
has the highest average relevance while p10 is the most preferred
display position. GRU appears to be unable to follow this preferred
display order and, instead, optimizes for the relevance order only.

Due to the significant decreases in performance that are observed
for the MDP-DIV and GRU baseline models in different ranking set-
tings, we answerRQ1 negatively and conclude that neither baseline
model performs well in complex ranking settings.

7.2 DRM performance on complex rankings
In order to answer RQ2, we consider the performance of DRM
reported in Table 2. In the first-bias setting the DRM performs sim-
ilarly to the baseline models across all datasets. While under SERP-
level rewards the performance varies per dataset, under document-
level rewards DRM performs better than the baseline methods in
all cases. The performance of DRM in the center-bias and last-bias
settings is significantly better than the baseline models, with a
substantial difference of over 0.1 P-NDCG in multiple cases. Thus,
if there is a SERP-level reward signal and the user preferred dis-
play order is non-standard then DRM significantly outperforms the
baseline methods. Under decomposable rewards DRM achieves the
best ranking performance regardless of the preferred display order.

Furthermore, Table 2 shows that the performance of DRM is not
affected by the preferred display order. Unlike the baseline methods,
DRM performs similarly in the first-bias, center-bias and last-bias

settings. DRM differs from the baselines by not having an assumed
display order, and therefore it also does not have a disadvantage
in any of the settings. Thus, by being able to determine the order
in which positions are filled, DRM can maintain its performance in
any complex ranking setting. This is further illustrated in Figure 2b:
DRM correctly identifies the preferred display order for each com-
plex ranking setting. In all three cases, the more preferred positions
have a higher average relevance label, with only a few minor errors
in the inferred order of less preferred positions. Then, Figure 2c
displays the average relevance label of the document DRM selects
per time-step; in all settings, the first placed documents are the
most relevant. DRM follows the preferred relevance order when
selecting documents, but places them in positions according to the
preferred display order. Thus, as hypothesized, DRM does not save
relevant documents for later time-steps; we attribute the better
performance of DRM to this difference.

In conclusion, we answer RQ2 positively. DRM outperforms the
baseline methods in settings where the preferred display order is
unknown. By looking at the average relevance label per position, we
see that DRM correctly infers the preferred order in all cases. Conse-
quently, by correctly inferring both the relevance and display order
DRM performs consistently well in all complex ranking settings.

7.3 Document-level vs. SERP-level rewards
Lastly, we briefly discuss the difference in performance between
document-level rewards and SERP-level rewards. Table 2 shows that
all methods perform better under document-level rewards. This is
expected since under SERP-level rewards the methods have to infer
how the reward signal is decomposed, while with document-level
rewards this decomposition is directly observed. Under SERP-level
rewards in the first-bias setting, it is also less clear what the best
performing method is, as it varies per dataset. Conversely, under
document-level rewards the DRM method reaches the highest per-
formance across all datasets. However, despite all methods perform-
ing less well under SERP-level rewards, the DRM still has the best
performance on the center-bias and last-bias settings. Figure 2b
shows that the DRM is capable of inferring the correct display order
from the less informative SERP-level reward signal. Thus, even with
very weak reward signals DRM is robust to display preferences in
complex ranking settings.
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(a) Average label per position for the GRU baseline model in different settings: first-bias(left), center-bias (middle) and last-bias (right).
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(b) Average label per position for the DRM in different settings: first-bias(left), center-bias (middle) and last-bias (right).
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(c) Average label per time-step for the DRM in different settings: first-bias(left), center-bias (middle) and last-bias (right).
Figure 2: Average label per position for a single GRU baseline model and a single DRM trained on the Istella dataset in
different complex ranking settings under SERP-level rewards.

8 RELATEDWORK
We discuss research related to complex ranking settings: whole page
optimization and ranking for alternative presentations formats.

8.1 Whole page optimization
In recent years, the ten blue links format has become less promi-
nent and search engines now usually display a selection of images,
snippets and information boxes along their search results [28]. As
SERPs contain more alternative items, their evaluation has changed
accordingly. Previous work has looked at whole page evaluation,
where either human judges [1] or user models [6] are used to eval-
uate the entire SERP. Such user models consider the possibility that
users may direct their attention to information boxes or snippets
in the SERP. As a result, they can recognize that some forms of
user abandonment can be positive, because the user can be satisfied
before clicking any links.
Wang et al. [28] introduced the idea of whole page presentation

optimization, where the entire result presentation is optimized,
including item position, image size, text font and other style choices.
While this method addresses the importance of user presentation
preferences, it does not decide what items to display, but assumes
this set is given. The method assumes that the number of possible
presentation formats is small enough to iterate over. In the complex
ranking setting this would lead to combinatorial problems as for
a layout with k positions there are k! preferred display orders
possible. While this work optimizes result presentation, it does not
consider the mismatch between the user preferred relevance order
and display order.

8.2 Alternative presentation formats
Section 1 has already discussed a number of different search set-
tings and layouts. While this paper has focussed on optimizing for
the relevance and display preferences of users, previous work has
looked at optimizing ranking for specific alternative presentations.
For instance, SERPs in mobile search generally use single column
vertical layouts for the relatively small mobile screens. Luo et al.
[19] recognize that the percentage of the screen an item covers
should be taken into evaluation and propose an evaluation method
that discounts items according to the varying lengths.
In addition, existing work on optimizing display advertisement

placement has noted that presentation context can have a big impact
on the click-through-rate of an ad. For instance, Metrikov et al. [20]
found that whole-page-satisfaction leads to higher click-through-
rates on the ad block of SERPs. Furthermore, ads can be more
effective if they are optimized to display multiple products at once
[15], or if multiple banners display the related advertisements [8].

Similar to the concept of complex ranking settings, these existing
studies show that for the best user experience the presentation of
a ranking should be optimized together with its content.

9 CONCLUSION
In this paper we have formalized the concept of a complex ranking
setting, where the user has a preferred relevance order – an order-
ing of documents – and a preferred display order – a preference
concerning the positions in which the documents are displayed. The
ideal ranking in a complex ranking setting matches the relevance
order with the display order, i.e., where the most relevant document



is displayed in the most preferred position, and so forth. Thus these
settings pose a dual problem: for the optimal user experience both
the relevance order and the display order must be inferred. We
simulate this setting by performing experiments where a permuted
DCG is given as a reward signal, e.g., in the last-bias ranking setting
the last display position is discounted as if it was the most preferred
position according to the user.

Our experiments show that existingmethods are unable to handle
the complex ranking setting. Our results show that while existing
methods learn different behaviors in different settings, they are
unable to rank documents according to any non-standard preferred
display order. As an alternative, we have introduced DRM, which
sequentially selects documents and the positions to place them on.
By explicitly modeling the duality between the relevance order and
display order, DRM is able to infer the user preferred display order
and relevance order simultaneously. Our results show that DRM
matches state-of-the-art performance in settings where the display
order is known, and significantly outperforms previous methods
in complex ranking settings. Thus, when dealing with complex
presentation layouts where it is unclear in what order users con-
sider display positions, DRM is able to provide good performance
regardless of the users’ actual display preferences.

Future work could consider more noisy reward signals; while our
setup simulates complex ranking settings, it does so without noise
in the reward signal. Even under these ideal circumstances existing
methods are unable to infer non-standard preferred display orders.
It would be interesting to investigate whether DRM is still able to
handle complex ranking settings with high levels of noise. Lastly,
the deployment of DRM on an actual search setting could show the
impact display preferences have on user experiences.

Code
To facilitate reproducibility of the results in this paper, we are
sharing the code used to run the experiments in this paper at
https://github.com/HarrieO/RankingComplexLayouts.
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