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Reinforcement learning for recommendation (RL4Rec) methods are increasingly receiving attention as an effective way to improve

long-term user engagement. However, applying RL4Rec online comes with risks: exploration may lead to periods of detrimental user

experience. Moreover, few researchers have access to real-world recommender systems. Simulations have been put forward as a solution

where user feedback is simulated based on logged historical user data, thus enabling optimization and evaluation without being run

online. While simulators do not risk the user experience and are widely accessible, we identify an important limitation of existing

simulation methods. They ignore the interaction biases present in logged user data, and consequently, these biases affect the resulting

simulation. As a solution to this issue, we introduce a debiasing step in the simulation pipeline, which corrects for the biases present

in the logged data before it is used to simulate user behavior. To evaluate the effects of bias on RL4Rec simulations, we propose a novel

evaluation approach for simulators that considers the performance of policies optimized with the simulator. Our results reveal that the

biases from logged data negatively impact the resulting policies, unless corrected for with our debiasing method. While our debiasing

methods can be applied to any simulator, we make our complete pipeline publicly available as the Simulator for OFfline leArning and

evaluation (SOFA): the first simulator that accounts for interaction biases prior to optimization and evaluation.
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1 INTRODUCTION

In recent years, interest in Reinforcement Learning for Recommendation (RL4Rec) has greatly increased in both academia

and industry. The key idea behind Reinforcement Learning (RL) is to optimize a policy that matches states to actions,

so that an agent performing these actions maximizes a cumulative reward [31]. RL does not just consider the immediate

reward of an action, but also the effect it has on subsequent actions, allowing it to learn w.r.t. long-term goals. For

Recommender Systems (RSs), long-term goals are usually some form of long-term user engagement, e.g., the cumulative

number of clicks or the dwell time over sessions of multiple recommendations [42]. Furthermore, RL is particularly suited

for exploring the item space over multiple interactions [41], learning a recommendation policy directly from complex

recommendation scenarios [7, 32, 40, 41], and adapting quickly to real-time user feedback [37]. Figure 1(a) displays the

typical flow of RL4Rec: a state is the historical interactions of a user who is about to receive a recommendation, an action
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Fig. 1. The general framework of RL4Rec, where a state is user historical interactions, an action is an item being recommended by
the RS, and a reward is related to user feedback. (a) shows RL4Rec applied online to interact with actual users. (b) shows how RL4Rec
typically interacts with a simulation-based environment.

is an item being recommended by the policy of the recommender system, and the reward is implicit or explicit user

feedback (e.g., a click, a rating, dwell time, an order, etc.). The goal of RL4Rec is to maximize the cumulative reward over

multiple sequential recommendations. RL methods learn from experience; in the RS setting this means that they learn

by recommending items to users and observing their subsequent interactions.

Despite these advantages, the RL4Rec approach brings risks when applied online: during learning, exploratory or

incorrect actions could be taken, which can be detrimental to the user experience [11, 17]. Since RL learns from experience,

it is almost unavoidable that initially some disliked items are recommended. Furthermore, online deployment takes time,

costs money, and many researchers – both in academia and industry – simply do not have access to an actual platform

with live users.

An alternative to online experimentation is provided by simulation-based experiments. Here, user feedback on items is

simulated in order to enable learning and evaluating RL-based RSs (see Figure 1(b)). Recently, several simulators have been

proposed, specifically for RL4Rec [13, 16, 22, 25, 26, 35, 36, 41]. Some work is designed for specific datasets and specific

recommendation tasks [16, 26, 35, 41], which makes them unavailable without access to similar data, and inapplicable

for simulating more general recommendation tasks. For better applicability, other work has proposed simulators based on

fully synthetic data which is completely generated by statistical distribution functions (e.g., Bernoulli distribution) [22].

The fully synthetic approach has been criticized because it oversimplifies user behavior [25]. As a result, the resulting

simulated behavior is dissimilar to the complex behavior of real users, and often recognized as unrealistic feedback.

To simulate user behavior while maintaining many of its natural complexities, others have proposed to simulate user

feedback based on datasets of user logged data [13, 25, 36]. These simulators usually follow user preferences in the logged

data (i.e., ratings provided by users) by basing their simulated behavior on them. E.g., a click on an item is more likely to

be simulated for a user if in the logged data this user gave a high rating to this specific item. Logged-data based simulators

avoid oversimplifying preferences, while still providing simulated user interactions for RL4Rec methods.

While these simulators allow for offline learning, we recognize two significant limitations: they ignore the biases

present in logged data; and they have not been evaluated based on the performance of their produced policies. Biases are

very prevalent in user-RS interaction data. Two influential types of biases are popularity bias and positivity bias. Popularity

bias occurs because users tend to interact with more popular items [21, 29], which results in the commonly observed

long tail distribution of the number of interactions per item in logged data. Positivity bias occurs because users rate the

items they like more often [21], which leads to positive feedback being over-represented. These types of biases in logged

data may lead to biased parameter estimation and prediction in many methods [19, 24], e.g., it is known to affect Matrix

Factorization (MF) [24]. Nevertheless, previous work on simulators has ignored biases and naively uses the observed

user-item interaction data when simulating user behavior. As a result, we can expect these biases to affect the simulator

and the feedback it generates. For instance, due to positivity bias, we can expect simulated users to bemore positive tomost

items than actual userswould be. Consequently, a policy learnedwith such a simulatorwould also be affected by the biases



in the logged data. These biased policies may result in detrimental performance if exposed to actual users [3, 19, 24, 28].

Hence, there is a need for a simulator that is based on logged data, but that mitigates the effect of bias in the data.

Existing work has evaluated RL4Rec simulators by comparing simulated user feedback with real user feedback from

logged data. For instance, some work evaluated the performance of a simulator by considering how well it predicts

skip/click behaviors [36] or dwell time [40]. While this type of evaluation can simulate a single user interaction, it does

not consider whether using a simulator actually leads to a well-performing policy. However, there is no work that directly

considers the performance of the produced policies that result from using a simulator, despite this being the ultimate goal.

E.g., if one wants to apply a policy learned in a simulator to a real-world RL4Rec setting, it is generally desired that the

policy has the best performance possible. Moreover, simulators can be very effective ways to reproduce and benchmark

RL4Rec methods, but such comparisons are considerably less reliable if their results are biased.

In this paper, we propose a debiasing method for RL4Rec simulators that mitigates the effect of bias in logged data.

Furthermore, we introduce a novel way of evaluating the effect of bias on the final policy performance of a simulator.

Our experimental results reveal that bias in logged data affects simulators and the policies they produce. While both of

these contributions can be applied to any RL4Rec simulator, we combine both steps in a newly proposed Simulator for

OFfline leArning and evaluation (SOFA). SOFA bases its simulation on a user-item rating matrix learned from logged

user data; unlike existing simulators, SOFA corrects for interaction bias when learning this matrix. To evaluate SOFA,

we use publicly available datasets where part of the data was logged on randomly recommended items.

The main contributions of this work are as follows:

(1) A novel approach for debiasing simulators that mitigates the effect of bias in logged data.

(2) A novel evaluation method to analyze the effect of bias on RL4Rec.

(3) Two types of experiments, both based on real-world datasets (Yahoo!R3 [19] and coat [24]) and based on a simulation

study, that show that bias in logged data affects simulators and the policies they produce.

(4) SOFA, a novel simulator for RL4Rec, the first that corrects for bias in logged data.

We release the code of SOFA
1
so that future work can develop RL4Rec algorithms while mitigating the effect of bias.

2 BACKGROUND: REINFORCEMENT LEARNING FORRECOMMENDATION

RLmethods are commonly studied in the context of anMarkov Decision Process (MDP), consisting of a state spaceS,
an action spaceA, a reward function R, the transition probabilities T , and a discount factor𝛾 [31]. We will now describe

howwemodel the recommendation task as an MDP [4, 5, 37, 42]:

State space S: A state represents all the current information onwhich a decision can be based. For RL4Rec, a state 𝑠𝑢𝑡 ∈S
stores historical interactions of user 𝑢 till the 𝑡-th turn of interaction, consisting of the recommended items and the

corresponding feedback, denoted as 𝑠𝑢𝑡 = ( [𝑖1,𝑖2,...,𝑖𝑡 ],[𝑓1,𝑓2,...,𝑓𝑡 ]), with 𝑖𝑘 the item recommended by the RS in turn 𝑘 ,

and 𝑓𝑘 the corresponding user feedback. The initial state 𝑠
𝑢
0
= ( [],[]) is always empty.While contextual information about

the user could be part of the state, in our experiments such information is not available.

Action space A: Action 𝑎𝑡 ∈A taken by the RS consists of the recommendation of a single item 𝑖𝑡 in turn 𝑡 .

Reward R: After receiving action 𝑎𝑡 , consisting of item 𝑖𝑡 being recommended by the RS, the (simulated) user gives

feedback 𝑓𝑡 ∈ {0,1} (i.e., skip or click) on this item. This feedback is used to generate the immediate reward 𝑟𝑡 =R(𝑓𝑡 ).
Transition probabilities T : After the user provides feedback 𝑓𝑡+1 on item 𝑖𝑡+1, the state transitions deterministically

to the next state 𝑠𝑢
𝑡+1= ( [𝑖1,...,𝑖𝑡+1],[𝑓1,...,𝑓𝑡+1]). The interaction terminates after 10 turns.

1
See https://github.com/BetsyHJ/SOFA.

https://github.com/BetsyHJ/SOFA
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(b) Popularity bias.

Fig. 2. Examples of positivity bias and popularity bias on the Yahoo!R3 dataset [19]. (a) shows positivity bias caused by the fact that
users rate items they like more often. (b) shows popularity bias caused by the fact that users tend to interact with more popular items.

Discount factor 𝛾 : As usual in MDPs,𝛾 ∈ [0,1] aims to balance the effect of immediate rewards and future rewards. At

its extremes, if𝛾 =0, the RS only considers the immediate reward when taking an action. When𝛾 =1, all future rewards

will be taken into account evenly.

This completes our description of our RL4RecMDP,which allows us to applyRLmethods to recommendation. Themain

difference between RL4Rec and the traditional recommendation task is that RL4Recmethods: (i) makemultiple sequential

recommendationswhile keeping track of previous interactions with a user, and (ii) try to optimize the cumulative rewards,

based on a discounted sum on the observed user feedback 𝑓𝑡 , the reward function R, and the discount factor𝛾 . Unlike
the traditional recommendation setup, RL4Rec considers the long-term feedback/rewards an RS receives. We further

discuss related work on RL4Rec in Section 4.

3 BACKGROUND: INTERACTIONBIAS IN LOGGEDUSERDATA

The recommendation task traditionally has a user setU= {𝑢1,...,𝑢𝑁 } on the one hand and an item setI= {𝑖1,...,𝑖𝑀 } on the
other hand. Logged user data is usually an observed rating matrix 𝒀 ∈R𝑁×𝑀

. One slot𝑦𝑢,𝑖 in this rating matrix 𝒀 denotes

the rating user𝑢 would give to item 𝑖 . In practice, the complete rating matrix is rarely known, since users usually do not

rate every available item.We useO∈ {0,1}𝑁×𝑀
as an observation indicator: 𝑜𝑢,𝑖 =1 if we observe the rating𝑦𝑢,𝑖 given

by user𝑢 on item 𝑖 , otherwise 𝑜𝑢,𝑖 =0. In reality, observed user behavior can be affected by many types of interaction bias.

Figure 2 visualizes the effect of positivity bias and popularity bias on the Yahoo!R3 dataset [19]. Positivity bias occurs

because users rate the items they like more often [21, 29] and results in positive feedback being over-represented. In

Figure 2(a), the naturally observed ratings in the training set (Train) are compared with the test set (Test) where users

were provided ratings on randomly selected items. On the randomly selected items we see only 2.6% of ratings are 5,

while in the naturally logged data, the proportions of 5 are about 24.6%. Clearly, the natural user behavior results in a

large “oversampling” of positive feedback. In contrast, popularity bias occurs because users tend to interact more with

popular items [21]. Figure 2(b) shows the number of interactions per item in the logged data and reveals a clear long-tail

distribution. As a result of types of bias like these, the logged data is not uniform-randomly observed, and the missing

slots in the rating matrix are Missing Not At Random (MNAR) [19].

3.1 Forms of Bias

Formally, MNAR is often modelled by separating the probability of observance and the probability of a rating. Generally,

the rating𝑦𝑢,𝑖 a user would give is not conditioned on whether the rating is given or not:

𝑃 (𝑦𝑢,𝑖 ,𝑜𝑢,𝑖 )=𝑃 (𝑜𝑢,𝑖 |𝑦𝑢,𝑖 )𝑃 (𝑦𝑢,𝑖 ) . (1)

We will now illustrate how this model can capture different forms of bias:

(i) No Bias – if every rating is equally likely to be observed, the ratings are not MNAR but Missing Completely At



Random (MCAR) and all users and items are equally represented:

∀(𝑢,𝑢 ′) ∈U,(𝑖,𝑖 ′) ∈I
(
𝑃 (𝑜𝑢,𝑖 )=𝑃 (𝑜𝑢′,𝑖′)

)
. (2)

(ii) Positivity Bias – when positivity bias is present, items that would receive a higher rating are more likely to be

given a rating. One way to model positivity bias is to state that if an item is more preferred it is also more likely

to be given a rating:

∀𝑢 ∈U,(𝑖,𝑖 ′) ∈I
(
𝑦𝑢,𝑖 >𝑦𝑢,𝑖′ →𝑃 (𝑜𝑢,𝑖 )>𝑃 (𝑜𝑢,𝑖′)

)
. (3)

(iii) Popularity Bias – when popularity bias is present, items that are more popular are more likely to be given a rating.

Let pop(𝑖) denote the popularity of an item; we can model popularity bias by stating that if an item is more popular

it is also more likely to be given a rating:

∀𝑢 ∈U,(𝑖,𝑖 ′) ∈I
(
pop(𝑖)>pop(𝑖 ′)→𝑃 (𝑜𝑢,𝑖 )>𝑃 (𝑜𝑢,𝑖′)

)
. (4)

Now that we have describedMNAR types of bias, we can consider the effect theymay have on RSs and RL4Rec simulators.

3.2 Effect of Bias on Rating Estimation and User Simulation

Without correction, the types of interaction bias identified above will affect rating prediction, and may thus further influ-

ence the RL4Rec simulators and the policies they help produce (see Figure 3). To illustrate how this may happen, we will

use a simple example to estimate the average rating of an item. Let avg(𝑖) be the true average rating: avg(𝑖)= 1

𝑁

∑
𝑢∈U𝑦𝑢,𝑖 ;

the naive (uncorrected) estimate is simply the average of the observed ratings:

âvg(𝑖)= 1∑
𝑢∈U1[𝑜𝑢,𝑖 =1]

∑︁
𝑢∈U:𝑜𝑢,𝑖=1

𝑦𝑢,𝑖 . (5)

In expectation, this naive estimate is affected by the observance probabilities:

E𝑜 [âvg(𝑖)]=
1∑

𝑢∈U𝑃 (𝑜𝑢,𝑖 =1)
∑︁
𝑢∈U

𝑃 (𝑜𝑢,𝑖 =1) ·𝑦𝑢,𝑖 . (6)

If we compare the expected average rating estimate with the forms of bias discussed in Section 3.1, we see the following:

(i)No Bias – if no bias is present (Eq. 2) the estimate is correct in expectation: E𝑜 [âvg(𝑖)]=avg(𝑖). (ii) Positivity Bias
– if positivity bias is present (Eq. 3), the estimate is expected to overestimate the true rating: E𝑜 [âvg(𝑖)] ≥ avg(𝑖). This
happens because higher ratings are over-represented in observance, thus the average is skewed upwards. (iii) Popularity
Bias – popularity bias (Eq. 4) will also affect the estimate, however, it depends on how popularity is distributed. The more

popular items will have a heavier influence on the estimate, thus, if more popular items are highly rated on average, it

will overestimate. Conversely, it will underestimate if more popular items are lowly rated on average.

While these effects go beyond estimating the average rating, understanding the effect of bias in this simple case helps us

understand the effect it has on rating prediction. E.g., if a model is trained to predict ratings on the observed ratings, then

under positivity bias we can expect it to overestimate ratings on average. For the same reasons overestimation happens on

the expected average estimate: the model is trained on a sample of ratings where positive ratings were oversampled [24].

In turn, RL4Rec simulators are often based on a predicted rating matrix, and clicks are more likely to occur if an item

𝑖 is recommended to a user 𝑖 where a high rating 𝑦𝑢,𝑖 was predicted. Consequently, if logged data contains positivity

bias, we would expect a simulator based on that data to simulate users to click more often due to the bias. In contrast,

if users were asked to rate randomly sampled items, resulting in MCAR data, then we expect simulated users to click

less on average. With more complicated forms of bias, such as popularity bias, the effects of the bias on the final user

become less predictable. Nonetheless, without intervention we can expect bias in logged data to affect the simulated users,



and unavoidably, it will thus also result in different learned RL4Rec policies. Therefore, it is important to understand

the effects of interaction bias on simulations, and to develop methods for mitigating them.

4 RELATEDWORK

RL-based Recommendation. Dulac-Arnold et al. [10] apply a Deep Deterministic Policy Gradient (DDPG) algorithm to

improve the efficiency of recommender systems with a large number of items. Following this framework, Chen et al. [4]

propose a tree-structured policy gradient recommendation framework, where a balanced hierarchical clustering tree is

built over the items and picking an item is formulated as seeking a path from the root to a certain leaf of the tree. A branch

of research has used Deep Q-Networks (DQNs) (or variants thereof) to improve recommendation performance. Zhao et al.

[38] adapt a DQN architecture to incorporate positive and negative feedback of users. Others use DQN to deal with some

special recommendation scenarios, such as tip recommendation [7], news recommendation [41], and recommendation

mixed with advertisements [40]. Another line of research applies the Actor-Critic framework, which combines the

advantages of Q-Learning and policy gradients for accelerated and stable learning. The Actor-Critic architecture is more

suitable for large and dynamic action spaces and can reduce redundant computations when dealing with more complex

recommendation scenarios, such as, e.g., list-wise recommendation [39], page-wise recommendation [37], and dynamic

treatment recommendation [32]. Choi et al. [9] use biclustering to reduce the state and action space, making the resulting

MDP easy to solve with RL. Chen et al. [5] propose a policy-gradient-based algorithm that corrects for bias caused by the

unobserved feedback of actions not chosen by the previous RS. Zhang et al. [34] introduce a hierarchical RL framework

to improve the diversity of recommender systems.

Debiased Recommender Systems. Debiased recommendation focuses on estimating the bias (e.g., positivity bias [21],

popularity bias [21, 29]), and correcting for them. Existing work on debiasing mostly focuses on missing interactions

(e.g.,missing ratings) between users and items, and considers the case when they are Missing Not At Random (MNAR).

When missing data is Missing Completely At Random (MCAR), maximum likelihood inference that is only based on

the observed data is unbiased because of the key property of Missing At Random (MAR) condition that the observation

process is independent of the value of unobserved data [12, 19]. In contrast, MNAR data fails to have this key property

and will probably lead to biased parameter estimation and prediction because of using the incorrect likelihood function.

Methodsproposed for debiasingMNARdata canbegrouped into three categories. Thefirst categoryappliesmissingdata

imputation onMNAR data with the joint likelihood of modeling rating prediction and the observation process [12, 19, 20].

The rating predictionmodel is meant to complete the ratingmatrix, while the observation process model is meant to learn

how the data point is missing according to its value. The second category makes use of Inverse Propensity Scoring (IPS)

from causal inference [14], and integrates it in the learning process [6, 15, 24]. Based on IPS, it is able to derive an unbiased

estimator for a wide range of performance estimators, such asMean Squared Error (MSE) andMeanAbsolute Error (MAE)

used in ratingpredicitonmodels. This typeof debiasingwork,which separates the estimationof bias fromrecommendation

models, makes it flexible to plug in any conditional probability estimation method as the propensity estimator [24]. The

third category is a hybrid method that integrates the above two methods so as to obtain robust performance by avoiding

the potentially large bias due to imputation inaccuracy and the high variance of the propensities [33].

User Simulations. A significant volume of research on RL algorithms is focused on games. As a result, many platforms

have been built for learning and evaluating RL algorithms on games, such as the Arcade Learning Environment (ALE) [1].

Brockman et al. [2] collect a large series of such environments in the widely used OpenAI Gym platform [2]. An important

reason for earlywork to consider games is that they can be simulated at scalewith relatively low computational costs. Thus,
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RL algorithms can obtain a large number of interactions required to find the optimal policies, making researchmuch easier.

In contrast with games, only recently simulators for RL-based RSs have been proposed. Rohde et al. [22] introduce Reco-

Gym,which simulates anRL environment for online advertising based on completely synthetic data.However, since it uses

fully synthetic data, it is unclear howwell RecoGym simulates realistic user behavior. Shi et al. [25] propose PyRecGym,

which bases its simulation on logged user data, and simulates a more general recommendation task. In order to aid repro-

ducibility and sharing ofmodels in academia, Ie et al. [13] create Recsim: a configurable simulation platform for evaluating

RL-algorithms on recommendation tasks. Recsimu [36] andVirtual-Tabao [26] both use aGenerativeAdversarial Network

to tackle the challenges of complex item distributions based on e-commerce datasets. Surprisingly, none of the existing

RL4Rec simulators that are based on logged user data, consider the effect of bias in logged data.
2
Thus we can expect that

bias – known to be prevalent in interaction data – affects all existing simulators, and by extension, the policies they produce.

To the best of our knowledge, we are the first to consider the effects this bias may have, and whether it can be mitigated.

5 ANOVELMETHOD FORDEBIASING SIMULATORS

We introduce a debiasing method for RL4Rec simulators and an evaluation method to measure the effect of debiasing

on the policies produced by simulators. Finally, we propose the SOFA simulator, which applies both contributions.

5.1 Debiasing a Simulator

Ie et al. [13] define the main components of an RL4Rec simulator to be a user model, an item model, and a user-choice

model. The user model and itemmodel aim to capture user preference for items, while the user-choice model simulates user

feedback when an item is recommended by an RS. Generally, user preferences are modelled using a predicted user-item

rating matrix. We will focus on RL4Rec simulators that use predicted user-item ratings and a user-choice model on top of

the predicted ratings, as shown in Figure 1(b). We consider the case where the rating prediction model is learned from

logged data.

As discussed in Section 3.1, logged data suffers from interaction bias, which affects any rating prediction model learned

from it. Consequently, any simulator using such a prediction model will also be biased. This poses a problem for RL4Rec,

since simulated user behavior should not be affected by the way a dataset was logged. As a solution we propose the

Intermediate Bias Mitigation Step (IBMS), an intermediate step between the logged data and the learned prediction model

that aims to mitigate the bias originating from the data from affecting the model. Figure 3 displays where the IBMS fits

in the simulator pipeline: by mitigating the effect of bias before the prediction model is learned, it minimizes its effect

to reach subsequent steps, including the final produced policy.

The IBMS can apply various debiasing methods; for this paper we use the IPS approach widely used in causal infer-

ece [14] and complete-cases analysis [18]. First, we consider a standard rating prediction loss. Let �̂� be the predicted

ratings, 𝒀 true ratings, and 𝑜𝑢,𝑖 =1 indicate that a rating from user𝑢 and item 𝑖 is present in the logged data. The standard

2
Recsim [13] is an exception, as Ie et al. [13] mention bias in logged user data is a challenge but they do not propose a solution.



loss is based on all the pairs that are present in the logged data:

L𝑁𝑎𝑖𝑣𝑒 =
1

|{(𝑢,𝑖) :𝑜𝑢,𝑖 =1}|
∑︁

(𝑢,𝑖) :𝑜𝑢,𝑖=1
𝛿𝑢,𝑖 (𝒀 ,�̂� ), (7)

where 𝛿𝑢,𝑖 is chosen to match some metric, with common choices being MSE andMAE:

𝛿MSE

𝑢,𝑖 (𝒀 ,�̂� )= (𝑦𝑢,𝑖−𝑦𝑢,𝑖 )2, 𝛿MAE

𝑢,𝑖 (𝒀 ,�̂� )= |𝑦𝑢,𝑖−𝑦𝑢,𝑖 |. (8)

We call this standard loss a naive approach, because it assumes all ratings are equally likely to be present in the logged

data, i.e., the data is MCAR. In contrast, interaction data on RS is usually MNAR, which leads to a biased estimate of the

full-information loss (i.e., the loss based on all ratings) since:

𝐸 [L𝑁𝑎𝑖𝑣𝑒 ]=
1∑𝑁

𝑢=1

∑𝑀
𝑖=1𝑃 (𝑜𝑢,𝑖 =1)

𝑁∑︁
𝑢=1

𝑀∑︁
𝑖=1

𝑃 (𝑜𝑢,𝑖 =1)𝛿𝑢,𝑖 (𝒀 ,�̂� )≠
1

𝑁 ·𝑀

𝑁∑︁
𝑢=1

𝑀∑︁
𝑖=1

𝛿𝑢,𝑖 (𝒀 ,�̂� ). (9)

Due to the effect of the bias introduced by 𝑃 (𝑜𝑢,𝑖 = 1), optimizing this naive loss can lead to a gross misprediction of

the predicted rating matrix �̂� [24, 30]. To mitigate the effect of bias in MNAR feedback, Schnabel et al. [24] apply an IPS

estimator [14]. If the probabilities 𝑃 (𝑜𝑢,𝑖 =1) are known, they can be corrected for by weighting the logged ratings:

L𝐼𝑃𝑆 =
1

𝑁 ·𝑀
∑︁

(𝑢,𝑖) :𝑜𝑢,𝑖=1

𝛿𝑢,𝑖 (𝒀 ,�̂� )
𝑃 (𝑜𝑢,𝑖 =1)

. (10)

BasingL𝐼𝑃𝑆 on logged data provides an unbiased estimate of the full-information loss:

𝐸 [L𝐼𝑃𝑆 ]=
1

𝑁 ·𝑀

𝑁∑︁
𝑢=1

𝑀∑︁
𝑖=1

𝑃 (𝑜𝑢,𝑖 =1)𝛿𝑢,𝑖 (𝒀 ,�̂� )
𝑃 (𝑜𝑢,𝑖 =1)

=
1

𝑁 ·𝑀

𝑁∑︁
𝑢=1

𝑀∑︁
𝑖=1

𝛿𝑢,𝑖 (𝒀 ,�̂� ) . (11)

For this to be trulyunbiased, the exact𝑃 (𝑜𝑢,𝑖 =1) values have to beknown. Inpractice, the loggeddata revealswhich ratings
were logged andwhichwere not, thus an estimationmethod can be fitted on𝑜𝑢,𝑖 =1 to infer amodel of𝑃 (𝑜𝑢,𝑖 =1). Schnabel
et al. [24] propose to use two simple propensity estimation methods: (i) Naive Bayes with Maximum likelihood [19], and

(ii) Logistic Regression based on features of a user-item pair [23]. By IPS weighting the ratings, the IBMS can prevent bias

from affecting the rating prediction model of a simulator. In the ideal case, this removes the effect of bias on the resulting

policies completely. In practice, we do not expect IBMS to completely remove bias but mitigate it to a large degree. The

IBMS is applicable to any simulator that simulates interactions based on a rating prediction model.

5.2 Evaluating the Effect of Bias in a Simulation

To evaluate how well the IBMS mitigates bias from affecting the resulting policies, we compare the performance of a

policy trained in a simulator with and without the IBMS. Simulators are designed for situations where online deployment

is impossible, thus, performance also needs to be estimated offline in these situations. Existingwork has evaluated RL4Rec

simulators by comparing their simulated feedback with logged user feedback [8, 26, 36], as shown in Figure 4(a). The

downside of this evaluation is that it does not consider the performance of policies learned with the simulator, despite

the fact that finding an optimal policy is the ultimate goal of RL4Rec.

As an alternative,we propose an offline evaluationmethod that does consider the final produced policies. Our evaluation

method only requires a sparse set ofMCAR ratings, gathered on randomly selected items. Since publicly available datasets

exist that meet this requirement (see Section 6) this method is available to all researchers in the field. Thus, we assume that

a large number of MNAR ratings and a sparse set of MCAR ratings are available. Then our evaluation method consists

of the following steps: (i) Train a policy using a simulator with the IBMS on the MNAR ratings, we will call the resulting

policy the debiased policy. (ii) Train another policy using an identical simulator on the MNAR ratings, expect it is does
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Fig. 4. Different evaluation methods. (a) shows the evaluation of a simulator by comparing the simulated feedback (e.g., ratings) with
logged user feedback. (b) shows the process of evaluating a simulator in an unbiased simulator created from theMCAR data, where
the problem caused by the sparsity of MCAR data is handled by two solutions: solution 1 is to evaluate on policy with limiting action
selection shown on the left-hand side of (b), while solution 2 is to evaluate in the simulator with the complete rating matrix generated
based onMCAR data shown on the right-hand side of (b).

not apply IBMS, resulting in the biased policy. (iii) Create another identical simulator, except that it is based on the MCAR

ratings; call this the unbiased simulator. (iv) Finally, deploy both the biased and debiased policies in the unbiased simulator

to evaluate their performance by looking at cumulative reward; the difference reveals the effect of the IBMS. The intuition

behind this approach to evaluation is that because MCAR data is already debiased during logging, we can create an

unbiased simulator. By comparing the behavior of two policies trainedwith andwithout the IBMS in this simulator, we can

see if IBMS truly removed the effect of bias. Importantly, the actual behavior of the produced policies is evaluated; this best

indicates the usefulness of a simulator. While the lack of bias in MCAR data is useful, its sparsity is still a problem, as the

simulator cannot simulate feedback on items without a rating. We propose two solutions, both visualized in Figure 4(b):

Solution 1 – Limiting Action Selection: During evaluation the RS is limited to only recommend items for which

ratings are available in theMCAR data. Thus for each user𝑢 the simulator finds the set of items 𝑖 for which ratings 𝑟𝑢,𝑖 are

available in the MCAR data. The advantage of this approach is that user behavior is always based on real MCAR ratings.

The disadvantage is that it limits the behavior of the RS: it could be unable to evaluate the actual behavior the RS would

perform, since many items are unavailable for certain users.

Solution 2 – Completing the RatingMatrix: To avoid limiting the behavior of the RS, a pseudo Ground Truth (GT)

rating matrix could be generated using a rating prediction model learned from the MCAR data. In contrast with rating

matrices based on MNAR data, the resulting pseudo GT is unbiased. The advantage is that the RS is not limited in its

behavior during evaluation, thus the actual behavior it would perform is evaluated. The disadvantage is that the pseudo

GT is based on predicted ratings, thus it may have some differences with the true user preferences.

5.3 A Simulator for Offline Learning and Evaluation

A predicted user-item rating matrix is first loaded to initialize the simulator. To simulate a user 𝑢 to interact with the

RS, a simulator initializes state 𝑠𝑢
0
as empty to simulate user login. In the 𝑡-th turn of interaction, the RS recommends

an item 𝑖𝑡 as action 𝑎𝑡 . After receiving this item, the user-choicemodel of the simulator simulates user feedback 𝑓𝑡 on item

𝑖𝑡 , completes the state transition from state 𝑠𝑢𝑡 to 𝑠𝑢
𝑡+1 and generates the immediate reward 𝑟𝑡 . The RS observes feedback

𝑓𝑡 plus the next state 𝑠
𝑢
𝑡+1, and prepares for the next turn of interaction. After𝐾 turns, the episode is terminated, and the

RS saves a sequence of transitions [(𝑠1,𝑎2,𝑟2,𝑠2),...,(𝑠𝐾−1,𝑎𝐾 ,𝑟𝐾 ,𝑠𝐾 )] into experience bufferD. The transitions inD can

be subsequently used to update the parameters of the RS.

Toaddress the functional requirementsof a simulator,wedesignourSimulator forOFfline leArningandevaluation (SOFA),



a debiased simulator consisting of two components: (i) a debiased user-item rating matrix to present users’ preference on

items, and (ii) a user-choice model to simulate user feedback, and provide the updated state and immediate reward to RS:

(i) The debiased user-item rating matrix is produced using the IBMS where we apply Propensity-Scored Ma-

trix Factorization (MF-IPS) [24]. Given a user 𝑢 and an item 𝑖 , MF computes the predicted rating 𝑦𝑢,𝑖 as: 𝑦𝑢,𝑖 =

𝒑𝑢⊤𝒒𝑖+𝑎𝑢+𝑏𝑖+𝑐,where the 𝒑𝑢 and 𝒒𝑖 are embedding vectors of user𝑢 and item 𝑖 , and the 𝑎𝑢 , 𝑏𝑖 , and 𝑐 are offsets

for the user, item and global respectively. MF-IPS is optimized by minimizing the prediction error between the

observed ratings𝑦𝑢,𝑖 and the predicted rating𝑦𝑢,𝑖 , weighted inversely to 𝑃 (𝑜𝑢,𝑖 =1):

argmin

𝑷,𝑸,𝑨


∑︁

(𝑢,𝑖) :𝑜𝑢,𝑖=1

𝛿 (𝑦𝑢,𝑖 ,𝑦𝑢,𝑖 )
𝑃 (𝑜𝑢,𝑖 =1)

+𝜆
(
∥𝑷 ∥2𝐹 +∥𝑸 ∥2𝐹

), (12)

where 𝑷 , 𝑸 , and𝑨 denote the embeddings of all users, all items, and the offset terms, respectively. Thus the final

predicted rating matrix is: �̂� =𝑷⊤𝑸+𝑨.
(ii) The user-choice model simulates user feedback on the item being recommended from the RS, and provides

the updated state and immediate reward to RS. Thus, the following steps are required for the user-choice model:

(i) Feedback simulation: We define ratings higher than 3 as positive preference, and others as negative preference

following common settings in RSs. Based on the assumption that users tend to click items if they have a positive

preference for these items, if 𝑦𝑢,𝑖𝑡 > 3, the user clicks item 𝑖𝑡 , denoted as 𝑓𝑡 = 1; otherwise, the user skips the

item, 𝑓𝑡 =0. (ii) State transition: just concatenate 𝑖𝑡 and 𝑓𝑡 with 𝑠𝑡−1 as the updated state 𝑠𝑡 as defined in Section 2.

(iii) Reward generation: The immediate reward 𝑟𝑡 of click and skip feedback is specifically set to 1 and -2, these

values were chosen because preliminary experiments showed they lead to efficient and stable policy learning in

experiments. Finally, the user-choice model sends the updated state and the immediate reward back to the RS.

6 EXPERIMENTAL SETUP

In response to the limitation of the existing simulators we point out and the solution we propose, we analyze three

research questions in the experiments: (RQ1) Does interaction bias in logged data affect a simulator? (RQ2) Can IBMS

mitigate this bias effectively? (RQ3) How does the intensity of bias affect the simulators and their resulting policies?

Below, we describe the datasets, and present the evaluation details for the simulator and the produced policy including

the evaluation metrics and parameters used in our experiments.

Datasets. Our experiments are based on two real-world datasets and several synthetic datasets we generated ourselves,

each with MNAR logged data as training set and MCAR data as test set.

Yahoo!R3 dataset [19]. The MNAR logged data of this dataset contains approximately 300,000 user-supplied ratings

from 15,400 users on 1,000 items in total. The MCAR data is collected by asking 5,400 users to give ratings on 10 items

randomly selected from the 1,000 items. Following [24], we consider positivity bias and use Naive Bayes to estimate

propensities 𝑃 (𝑜𝑢,𝑖 ).
Coat dataset [24]. The dataset includes ratings from 290 users on 24 self-selected items and 16 randomly-selected items

from totaly 300 items. Following [24], propensity 𝑃 (𝑜𝑢,𝑖 ) is estimated by using standard regularized logistic regression

trained with the profile of users (e.g., gender and age) and items (e.g., type and color). The bias estimated in the above way

is not specified as a certain type of bias and can be recognized as a mixture of different types of biases.

Synthetic data. In order to measure the effect of the degree of bias on simulators, we generate several synthetic datasets

with varying degrees of positivity bias. Unlike real-world data, this synthetic setup allows us to keep all factors constant

except for the positivity bias. The generation of synthetic data involves two steps:



(i) Generate the complete true user-item rating matrix, denoted as GT. We follow Zou et al. [42] where the generation

process is based on a standard Gaussian distribution. Given 𝑁 users and 𝑀 items, we generate the associated

parameter vectors 𝑷 ∈R𝑁×𝑑
and 𝑸 ∈R𝑀×𝑑

as profiles of users and items. 𝒑𝑢 and 𝒒𝑖 denoting profile vectors of user

𝑢 and item 𝑖 , are both drawn from the normal distributionN(0,1). User preference on items is determined by the

inner-product of 𝑷 and 𝑸 , denoted as 𝑷⊤𝑸 . GT is generated by mapping 𝑷⊤𝑸 into five rating bins with score from

1 to 5 according to a certain rating distribution 𝑃 (𝒀 =𝑦). In practice, we choose 𝑁 = 300,𝑀 = 300, 𝑑 = 10, and set

𝑃 (𝒀 =𝑦)= [0.526,0.242,0.144,0.062,0.026] for𝑦= [1,2,3,4,5].
(ii) Generate MNAR logged data under the control of observation probability:

𝑃 (𝑜𝑢,𝑖 |𝑦𝑢,𝑖 )=𝛼𝑃 (𝑜𝑢,𝑖 |𝑦𝑢,𝑖 ,pos-bias)+(1−𝛼)𝑃 (𝑜𝑢,𝑖 |uniform) . (13)

We set the probability of uniform observation 𝑃 (𝑜𝑢,𝑖 =1 |uniform)=5% so that ∼5% of the user-item rating matrix is

observed; thus, the remaining∼95% ismissing.WesetP(𝑜𝑢,𝑖 =1|𝑦𝑢,𝑖 =𝑦,pos-bias)= [0.029,0.021,0.035,0.161,0.577] for
𝑦= [1,2,3,4,5] to obtain a rating distribution similar to that of the Yahoo!R3 dataset. The intensity of bias is controlled

by𝛼 : if𝛼 =1.0, the samplingprobability is determinedbypositivity bias; if𝛼 =0, the loggeddata is sampled completely

at random.Wevary𝛼 ∈ {0.0,0.2,0.4,0.6,0.8,1.0} togenerateMNARloggeddatawithdifferentdegreesof positivitybias.

Hyperparameters. The simulators rely on the user-item rating matrix generated by MF, including MF-IPS and MF-

Naive. We followed the procedure of Schnabel et al. [24] to tune the MF hyperparameters: the 𝐿2 regularization weight

𝜆 ∈ {10−6,...,1} and dimension of embeddings of users and items 𝑑 ∈ {5,10,20,40}, were chosen by cross-validation while
considering to match the rating distributions of the predicted ratings with the real rating distributions simultaneously.

3

For the policy used in the experiments, we use a basic DQN policy with a Gated Recurrent Unit (GRU)-based network

to encode discrete state and approximate action-value function. Due to space limitations, a detailed description of the

architecture of this DQN policy is provided in the released code. The required hyperparameters come in two kinds:

(1) Hyperparameters of the used DQN, e.g.,𝛾 discount factor, and the dimensionℎ of the look-up layer, and the dimension

ℎGRU of the GRU hidden state. (2) Hyperparameters used in learning process, e.g., the size of replay bufferD, the speed of

greedy epsilon decay, the size ofminibatch and the frequency of target network update. FollowingZou et al. [42], we fix the

discount factor𝛾 to 0.9, and choose the other hyperparameters by runningmultiple experiments and seeingwhich resulted

in themost stable learningcurveswhichwasmeasuredbytheaveragecumulativenumberofclicksover10-turn interactions

with given simulators. The specific values of the hyperparameters for different datasets will be released with the code.

Evaluation Metrics. To evaluate the performance of a policy, we use the cumulative number of clicks received over 10

interaction turns in the unbiased simulator. Additionally, we apply the evaluation metrics Mean Squared Error (MSE) and

Mean Absolute Error (MAE), both of which are widely used for the rating prediction task. Finally, Accuracy (ACC) and

Click-ACC are also used to show the accuracy of the predicted ratings and the predicted click/skip behavior generated

by the click model, which maps high ratings into clicks and low ratings into skips.

7 EXPERIMENTAL RESULTS

7.1 Effect of Interaction Bias

Recall that in Figure 3, we illustrate the propagation of the effect of bias from user interactions to reach the produced

policies.Weanalyze the effect of bias on the taskof predicting the ratingmatrix. InTable 1,wefind thatMF-IPSoutperforms

3
This is slightly different from the setting in [24] without matching the real rating distributions. The median rating yields the minimal MSE loss when

prediction error is large. This may cause most of the simulated feedback to be negative, and policies cannot learn useful information from the interactions.



Table 1. MAE, MSE, ACC, and Click-ACC performance of MF-IPS andMF-Naive compared with unbiased testset. Click-ACCmeans
the accuracy for the click or skip behaviors generated from the rating scores. ↓/↑ indicate smaller is better or worse.

Method

Yahoo!R3 Coat Synthetic (𝛼 =1)

MSE↓ MAE↓ ACC↑ Click-ACC↑ MSE↓ MAE↓ ACC↑ Click-ACC↑ MSE↓ MAE↓ ACC↑ Click-ACC↑
MF-IPS 1.518 0.999 0.336 0.889 1.129 0.878 0.311 0.827 1.445 0.997 0.284 0.901

MF-Naive 2.263 1.287 0.222 0.761 1.217 0.914 0.287 0.830 1.780 1.093 0.273 0.856
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Fig. 5. Rating distributions on Yahoo!R3 dataset.
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Fig. 6. Rating distributions on the synthetic data with 𝛼 =1.
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Fig. 7. Learning curves tracking average cumulative number of clicks over 10-turn interactions with given simulators SOFA and
Naive-Sim. Results are an average of 10 independent runs, lines showmean performance, and shaded areas are confidence intervals.

MF-Naive with metrics MSE, MAE and ACC on two real datasets
4
and synthetic data with 𝛼 =1.

Moreover, for a better understanding of how bias affects MF, we analyze the complete user-item rating matrices

generated byMF-IPS andMF-Naive. For the sake of brevity, we only present the analysis of positivity bias on Yahoo!R3

and synthetic data. Figure 5(a) and 6(a) show the rating distributions of the MNAR logged data (Train) and the unbiased

data (Test for MCAR data of Yahoo!R3 or GT for the synthetic data). Positivity bias in the logged data is adequately

demonstrated resulting in a large “oversampling” of the higher ratings. Figure 5(b) and 6(b) show the rating distributions

of the complete user-item rating matrices generated by MF-IPS and MF-Naive learned from the logged data. We find

that MF-Naive tends to overestimate ratings, and this in turn confirms our theoretical analysis in Section 3.2. MF-IPS can

mitigate this kind of bias to some extent, shown here as a larger number of lower ratings than with MF-Naive. We notice

a mismatch in the rating distributions between the true rating matrices and the generated rating matrices with ratings

concentrating at 2 for MF-IPS or 3 for MF-Naive. The main reason is that MF models learned from the sparse logged data

still suffer from large prediction errors, and predicting ratings as the median yields the minimal loss (e.g.,MSE loss).

To conclude, interaction bias affects the prediction of the rating matrix based on logged data. Thus, any simulator using

such a predictionmodelwill also be biased, and the quality of policies trained using such a biased simulatorwill be affected.

7.2 Evaluation Results on Resulting Policies

Two DQN policies equipped with the same networks first interact with two simulators, one with IBMS named SOFA and

one without IBMS named Naive-Sim, and update their parameters from the interactions. Figure 7 shows the learning

curves of these DQN policies, which track average cumulative number of clicks over 10-turn interactions with given

4
The results are similar to those reported in [24], but slightly different because we consider matching the real rating distributions.
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Fig. 8. Evaluation results of the produced policies on Yahoo and Coat.

simulators SOFA and Naive-Sim on Yahoo!R3, Coat and synthetic dataset with 𝛼 =1.

We notice that learning curves show a downward trend at the begining of learning, because the simulators follow the

basic hypothesis for RSs that users would dislike repeated recommended items and directly skip them. The duplicate

recommendation is detrimental to novelty and we should avoid it [27]. We can observe that these policies converge

after multiple learning steps, and the cumulative numbers of click for the policies resulting from using Naive-Sim are

consistently higher than SOFA over the whole learning process. It is noteworthy that the learning curves are based on

the number of clicks received during training; they are an unreliable estimate of actual performance due to bias.

Figure 8 shows the evaluation results on the Yahoo!R3 and Coat datasets with two solutions of evaluation on the sparse

MCAR data: (1) Solution-1: Limiting Action Selection, (2) Solution-2:Completing the RatingMatrix.
DQN policies resulting from using simulators outperform the random recommendation policy on two real datasets. For

Solution-1, the gap of the cumulative number of clicks over interactions between the different policies is not significant

on Yahoo!R3. The most plausible reason is that the limited action candidate set is too distinct from the items that policies

would actually recommend. For Solution-2, the produced DQN policies clearly outperform random recommendation

policies. In the first turn of interaction, policies show the same results because DQN-based policies randomly recommend

an item in the first turn when the initial user state is empty. Then the policies recommend the item following the 𝜖-greedy

strategy to choose the action with highest Q-value, and obtain better performance than random recommendation policy.

DQN policies resulting from using SOFA perform better than the policies resulting from using Naive-Sim inmost cases,

except for the evaluation results for Solution-1 on Yahoo!R3 dataset, most likely because the limited action candidate

set results in very similar recommendations for all the different policies. The evaluation results on the debiased simulator

show a reversal of relative differences compared to the learning curves. This again supports our analysis on Section 3.2

that the simulator without IBMS overestimates ratings on average and simulates users to click more often because of

bias. This reversal also answersRQ1 positively: Interaction bias in logged data does affect a simulator.

We also present evaluation results on the synthetic data with observation of the logged data fully associated with

positivity bias (𝛼 =1) by deploying the resulting policies in the unbiased simulator directly created with the complete

true rating matrix GT, shown in Figure 9. We observe results consistent with those on the real-world datasets: DQN

policies outperform the random recommendation policy, and the policies resulting from using SOFA outperform the

policy resulting fromusingNaive-Sim. Therefore, we answerRQ2 positively: the proposed SOFAwith IBMS doesmitigate

enough bias to result in better performing policies.

7.3 Effect of the Intensity of Bias

To answerRQ3, we evaluate the simulated feedback and the resulting policies in the synthetic simulator built with the

complete true rating matrix GT.

Figure 10(a) shows the performance of simulated feedback with evaluationmetric Click-ACC.When 𝛼 equals 0with no

bias in the logged data, the performance of simulated feedback generated from the rating matrices completed byMF-IPS
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Fig. 10. Varing the intensity of bias. (a) shows the performance of the simulated feedback with
Click-ACC. (b) and (c) report the evaluation results for the policies over 5- and 10-turn interactions.

and MF-Naive are similar. With the increase of the bias in logged data, MF-IPS consistently outperforms MF-Naive. Both

achieve their best performance when 𝛼 =0.4. With the increase of bias with 𝛼 in range of 0.4–1.0, the performance of

MF-Naive gradually decreases because the bias in logged data leads to grossly incorrect parameters estimation and rating

prediction models. In contrast, MF-IPS with IBMS is more robust, which once again answersRQ2 positively.
Figure 10(b) and 10(c) show the cumulative numbers of clicks for policies over 5 and 10-turn interactions respectively.

When 𝛼 is bigger than 0.5, leading to a large degree of bias in the logged data, SOFA can lead to a better policy over 5

and 10-turn interactions. When 𝛼 is smaller, SOFA performs worse over 10-turn interactions, but similar over 5-turn

interactions. A plausible explanation is that IPS suffers from high variance and may underestimate ratings on average

due to overweighting the lower logged ratings. This underestimation of the ratings results in less positive feedback than

the real case, and further affects the policy to obtain similar performance over 5-turn interactions, but worse on turn-10.

Finally, we answerRQ3: When the degree of bias in the logged data is very high, IBMS with using an IPS estimator

can efficiently mitigate the bias from affecting the simulators and their produced policies. However, a minor flaw is that

the IPS estimator used in IBMS can suffer from variance when there is very little bias in the logged data.

8 CONCLUSION

In this paper, we have analyzed the phenomenon that interaction bias in logged data affects RL4Rec simulators and the

policies they produce. To mitigate the effect of bias, we have proposed the Intermediate Bias Mitigation Step (IBMS), an

intermediate step between the logged data and the learned prediction model. Furthermore, we have introduced a novel

way of evaluating the effect of bias on the final policy performance of a simulator. Experimental results have revealed

that (1) interaction bias in logged data affects a simulator, (2) the proposed IBMS can mitigate the bias, especially in

the case of serious bias. We have combined IBMS and the newly proposed evaluation method, in a novel Simulator for

OFfline leArning and evaluation (SOFA) to help researchers in the field develop and evaluate Reinforcement Learning

for Recommendation (RL4Rec) algorithms while mitigating the effects of interaction bias.

While we think that the IBMS is an important contribution to RL4Rec, SOFA only simulates the single-item recommen-

dation scenario, where only one item is recommended at once. In practice, RSs often recommend multiple items at once,

and thus future work could further consider the effect of interaction bias on simulators for multi-item recommendation

scenarios.
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