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Abstract
State-of-the-art Learning to Rank (LTR) methods
for optimizing ranking systems based on user in-
teractions are divided into online approaches – that
learn by direct interaction – and counterfactual ap-
proaches – that learn from historical interactions.
We propose a novel intervention-aware estimator to
bridge this online/counterfactual division. The es-
timator corrects for the effect of position bias, trust
bias, and item-selection bias by using corrections
based on the behavior of the logging policy and on
online interventions: changes to the logging policy
made during the gathering of click data. Our ex-
perimental results show that, unlike existing coun-
terfactual LTR methods, the intervention-aware es-
timator can greatly benefit from online interven-
tions. To the best of our knowledge, this is the first
method that is shown to be highly effective in both
online and counterfactual scenarios.

1 Introduction
Ranking systems form the basis for most search and recom-
mendation applications [Liu, 2009]. As a result, the quality
of such systems can greatly impact the user experience, and
thus, it is important that the underlying ranking models per-
form well. The field of unbiased Learning to Rank (LTR)
considers methods that optimize ranking models based on
user clicks, while correcting for the interaction biases that are
present in these interactions. User interactions are a form of
implicit feedback, and therefore, generally strongly affected
by other factors than user preference [Joachims et al., 2005].
To be able to reliably learn from interaction data, the effect
of factors other than preference has to be corrected for. In
clicks on rankings three prevalent factors are well known:
(i) position bias: users are less likely to examine, and thus
click, lower ranked items [Craswell et al., 2008]; (ii) item-se-
lection bias: users cannot click on items that are not dis-
played [Ovaisi et al., 2020; Oosterhuis and de Rijke, 2020a];
and (iii) trust bias: because users trust the ranking system,
they are more likely to click on highly ranked items that they
do not actually prefer [Agarwal et al., 2019; Joachims et al.,
2005]. As a result of these forms of bias, which ranking sys-

tem was used to gather clicks can have a substantial impact
on the clicks that will be observed. Current unbiased LTR
methods can be divided into two families: counterfactual ap-
proaches [Joachims et al., 2017] – that learn from histori-
cal data, i.e., clicks that have been logged in the past – and
online approaches [Yue and Joachims, 2009] – that can per-
form interventions, i.e., they can decide what rankings will be
shown to users. Recent work has noticed that some counter-
factual methods can be applied as an online method [Jager-
man et al., 2019], or vice versa [Zhuang and Zuccon, 2020;
Ai et al., 2021]. Nonetheless, every existing method was de-
signed for either the online or counterfactual setting, never
both.

In this work, we propose a novel estimator for both
counterfactual and online unbiased LTR from clicks: the
intervention-aware estimator. The intervention-aware esti-
mator builds on ideas that underlie the latest existing coun-
terfactual methods: the policy-aware estimator [Oosterhuis
and de Rijke, 2020a] and the affine estimator [Vardasbi et
al., 2020]; and expands them to consider the effect of on-
line interventions. It does so by considering how the effect of
bias is changed by an intervention, and utilizes these differ-
ences in its unbiased estimation. As a result, the intervention-
aware estimator is both effective when applied as a counter-
factual method, i.e., when learning from historical data, and
as an online method where online interventions lead to enor-
mous increases in efficiency. In our experimental results the
intervention-aware estimator is shown to reach state-of-the-
art LTR performance in both online and counterfactual set-
tings, and it is the only method that reaches top-performance
in both settings.

2 Interactions with Rankings
This paper assumes that three forms of interaction bias occur:
position bias, item-selection bias, and trust bias.

Position bias occurs because users only click an item after
examining it, and users are more likely to examine items dis-
played at higher ranks [Craswell et al., 2008]. Thus the rank
(a.k.a. position) at which an item is displayed heavily affects
the probability of it being clicked. We model this bias using
P (E = 1 | k): the probability that an item d displayed at
rank k is examined by a user [Wang et al., 2018].

Item-selection bias occurs when some items have a zero



probability of being examined in some displayed rank-
ings [Ovaisi et al., 2020; Oosterhuis and de Rijke, 2020a].
This can happen because not all items are displayed to the
user, or if the ranked list is so long that no user ever considers
the entire list. We model this bias by stating: ∃k,∀k′, (k′ >
k → P (E = 1 | k′) = 0), i.e., there exists a rank k such that
items ranked lower than k have no chance of being examined.

Finally, trust bias occurs because users trust the ranking
system and, consequently, are more likely to perceive top
ranked items as relevant even when they are not [Joachims
et al., 2005]. We model this bias using: P (C = 1 | k,R,E):
the probability of a click conditioned on the displayed rank k,
the relevance of the item R, and examination E.

To combine these three forms of bias into a single model,
we follow Agarwal et al. [2019] and Vardasbi et al. [2020]:

αk = P (E = 1 | k)
(
P (C = 1 | k,R = 1, E = 1)

− P (C = 1 | k,R = 0, E = 1)
)
,

βk = P (E = 1 | k)P (C = 1 | k,R = 0, E = 1).

(1)

Existing work has considered how the α and β values can be
inferred accurately [Agarwal et al., 2019; Wang et al., 2018;
Fang et al., 2019], we will assume they are known. With
P (R = 1 | d, q) as the probability that an item d is deemed
relevant w.r.t. query q by the user, we obtain the following
compact notation for the click probability:

P (C = 1 | d, k, q) = αkP (R = 1 | d, q) + βk. (2)

For a single ranking y, let k be the rank at which item d is
displayed in y; we denote αk = αd,y and βk = βd,y . Finally,
let π be a ranking policy used for logging clicks, where π(y |
q) is the probability of π displaying ranking y for query q,
then the click probability conditioned on π is:

P (C = 1|d, π, q) =
∑

y π(y|q)(αd,yP (R = 1|d, q) + βd,y).

3 Background: Counterfactual LTR
Most ranking metrics are additive w.r.t. documents; let P (q)
be the probability that a user-issued query is query q, then the
metric rewardR commonly has the form:

R(π) =
∑

q P (q)
∑

d∈Dq
λ(d |π, q)P (R = 1|d, q). (3)

Here, the λ function scores each item d depending on where
π places d; λ can be chosen to match a desired metric, for in-
stance, the popular Discounted Cumulative Gain (DCG) met-
ric [Järvelin and Kekäläinen, 2002]:

λDCG(d |π, q) =
∑

y π(y | q)(log2(rank(d | y) + 1))
−1
. (4)

Supervised LTR methods can optimize π to maximize R if
relevance scores P (R = 1 | d, q) are known [Liu, 2009].

In the counterfactual LTR setting the relevance scores are
not known, instead optimization is based on historical user
interactions. Let D be a set of collected interaction data over
T timesteps; for each timestep t it contains the user issued
query qt, the logging policy π̄t used to generate the displayed
ranking ȳt, and the clicks ct received on the ranking:

D = {(π̄t, qt, ȳt, ct)}Tt=1, (5)

where ct(d) ∈ {0, 1} indicates whether item d was clicked at
timestep t. While clicks are indicative of relevance they are
also affected by several forms of bias, as discussed in Sec-
tion 2. Counterfactual LTR methods utilize estimators that
correct for such bias to unbiasedly estimate the reward of a
policy π. The prevalent methods introduce a function ∆̂ that
transforms a single click signal to correct for bias. The gen-
eral estimate of the reward is:
R̂(π | D) = 1

T

∑T
t=1

∑
d λ(d |π, q)∆̂(d | π̄t, qt, ȳt, ct). (6)

We note the important distinction between the policy π for
which we estimate the reward, and the policy π̄t that was used
to gather interactions. During optimization only π is changed
in order to maximize the estimated reward.

The original Inverse-Propensity-Scoring (IPS) estimator
introduced by Wang et al. [2016] and Joachims et al. [2017]
weights clicks according to examination probabilities:

∆̂IPS(d | ȳt, ct) =
ct(d)

P (E = 1 | ȳt, d)
. (7)

This estimator results in unbiased optimization if no item-
selection bias or trust bias is present, thus it can only correct
for position bias, for a proof we refer to previous work by
Joachims et al. [2017] and Vardasbi et al. [2020]. Oosterhuis
and de Rijke [2020a] introduced policy-aware propensities
for the IPS estimator to correct for item-selection bias, and
Vardasbi et al. [2020] introduced an estimator based on affine
corrections that can correct for trust bias. Currently, there is
no estimator to correct for all three forms of bias together.

4 The Intervention-Oblivious Estimator
Before we propose our main contribution, the intervention-
aware estimator, we first introduce an estimator that simul-
taneously corrects for position bias, item-selection bias, and
trust bias, without considering the effects of interventions.

First we note the probability of a click conditioned on a
single logging policy πt can be expressed as:
P (C = 1 | d, πt, q)

= Eȳ[αd |πt, q]P (R = 1 | d, q) + Eȳ[βd |πt, q].
(8)

where the expected values of α and β conditioned on πt are:
Eȳ[αd | πt, q] =

∑
ȳ πt(ȳ | q)αd,ȳ,

Eȳ[βd | πt, q] =
∑

ȳ πt(ȳ | q)βd,ȳ.
(9)

By reversing Eq. 8 the relevance probability can be obtained
from the click probability. We introduce our intervention-
oblivious estimator, which applies this transformation to cor-
rect for bias:

∆̂IO(d | qt, ct) =
ct(d)− Eȳ[βd | πt, qt]

Eȳ[αd | πt, qt]
. (10)

The intervention-oblivious estimator brings together the
policy-aware [Oosterhuis and de Rijke, 2020a] and affine
estimators [Vardasbi et al., 2020]: on every click it ap-
plies an affine transformation based on the logging policy
behavior. Unlike existing estimators, we can prove that
the intervention-oblivious estimator is unbiased w.r.t. our as-
sumed click model (Section 2). For the sake of brevity and be-
cause it is extremely analogous to the proof for Theorem 5.1,
we omit this proof of unbiasedness in this extended abstract.



5 The Intervention-Aware Estimator
Existing estimators for counterfactual LTR are designed for
a scenario where the logging policy is static: ∀(πt, πt′) ∈
D, πt = πt′ . While they are still unbiased when interven-
tions do take place [Jagerman et al., 2019], they ignore any
effect an intervention may have. In other words, any click is
treated by considering how the corresponding logging policy
treats the item, ignoring the treatment of all the other logging
policies. Our goal is to introduce an estimator whose individ-
ual corrections are not only based on single logging policies,
but instead consider the entire collection of logging policies
used to gather the data D.

For ease of notation, we use ΠT for the set of policies that
gathered the data in D: ΠT = {π1, π2, . . . , πT }. With the
expected values of α and β conditioned on ΠT :

Et,ȳ[αd | ΠT , q] = T−1∑T
t=1

∑
ȳ πt(ȳ | q)αd,ȳ,

Et,ȳ[βd | ΠT , q] = T−1∑T
t=1

∑
ȳ πt(ȳ | q)βd,ȳ,

(11)

the probability of a click can be conditioned on the ΠT set is:

P (C = 1 | d,ΠT , q) (12)

= T−1
∑T

t=1

∑
ȳ πt(ȳ | q)(αd,ȳP (R = 1 | d, q) + βd,ȳ)

= Et,ȳ[αd | ΠT , q]P (R = 1 | d, q) + Et,ȳ[βd | ΠT , q].

We propose our intervention-aware estimator that corrects
for bias using the expectations conditioned on ΠT :

∆̂IA(d | qt, ct) =
ct(d)− Et,ȳ[βd | ΠT , qt]

Et,ȳ[αd | ΠT , qt]
. (13)

The salient difference with the intervention-oblivious estima-
tor is that the expectations are conditioned on ΠT , all log-
ging policies in D, instead of an individual logging policy
πt. While the difference with the intervention-oblivious es-
timator may seem small, the resulting estimates can be very
different, our experimental results show that this result in a
sizeable reduction in variance.

To better understand the difference, consider an example
where T = 100 and an item was ranked very highly but not
clicked for t = 1 up to t = 99 but ranked lowly and clicked at
t = 100. The intervention-oblivious estimator would assign
a high weight to the click at t = 100 to compensate for the
low rank at which it was displayed when clicked. Conversely,
the intervention-aware estimator would assign a much lower
weight to this click because it compensates both for the low
rank at t = 100 but also the high ranking of the item received
the first 99 timesteps. Thus we see how online interventions
can create large differences between the two estimates.

Lastly, we note that when no interventions take place the
intervention-oblivious estimator and intervention-aware esti-
mators are equivalent. Because the intervention-aware es-
timator is the only existing counterfactual LTR estimator
whose corrections are influenced by online interventions, we
consider it an important step to bridge the gap between coun-
terfactual and online LTR.

Finally, we prove that the intervention-aware estimator is
unbiased w.r.t. our assumed click model (Section 2).

Theorem 5.1. The estimated reward R̂ (Eq. 6) using the
intervention-aware estimator (Eq. 13) is unbiased w.r.t. the
true reward R (Eq. 3) under two assumptions: (i) our click
model (Eq. 2), and (ii) the click probability on every item,
conditioned on ΠT , is correlated with relevance:

∀q,∀d, Et,ȳ[αd | ΠT , q] 6= 0. (14)

Proof. Using Eq. 12 and Eq. 14 the relevance probability can
be derived from the click probability by:

P (R = 1 | d, q) =
P (C = 1 | d,ΠT , q)− Et,ȳ[βd | ΠT , q]

Et,ȳ[αd | ΠT , q]
.

(15)
Eq. 15 can be used to show that ∆̂IA is an unbiased indicator
of relevance:

E
t,ȳ,c

[
∆̂IA(d|qt, ct)|ΠT

]
=

E
t,ȳ,c

[ct(d)|ΠT , qt]− E
t,ȳ

[βd|ΠT , qt]

Et,ȳ[αd | ΠT , qt]

=
P (C = 1|d,ΠT , qt)− E

t,ȳ
[βd|ΠT , qt]

Et,ȳ[αd | ΠT , qt]
= P (R = 1|d, qt).

(16)
Finally, combining Eq. 16 with Eq. 6 and Eq. 3 reveals that
R̂ based on ∆̂IA is unbiased w.r.t.R:

Et,q,ȳ,c

[
R̂(π | D)

]
(17)

=
∑
q

P (q)
∑
d

λ(d | π, q)Et,ȳ,c

[
∆̂IA(d | c, q) |ΠT , q

]
=
∑
q

P (q)
∑
d

λ(d | π, q)P (R = 1 | d, q) = R(π).

6 Experimental Setup
Our experiments aim to compare the performance of the
intervention-aware estimator with existing LTR methods in
both the online and counterfactual setting.1We use the semi-
synthetic experimental setup that is common in existing work
on both online LTR [Hofmann et al., 2013; Oosterhuis and
de Rijke, 2018; Oosterhuis and de Rijke, 2019; Zhuang
and Zuccon, 2020] and counterfactual LTR [Joachims et
al., 2017; Vardasbi et al., 2020; Ovaisi et al., 2020]. At
each timestep, we simulate a user-issued query by uniformly
sampling from the training and validation partitions of the
Yahoo Webscope dataset [Chapelle and Chang, 2011], a
dataset based on real-world commercial search logs. We ap-
ply Eq. 2 with α = [0.35, 0.53, 0.55, 0.54, 0.52] and β =
[0.65, 0.26, 0.15, 0.11, 0.08] [Agarwal et al., 2019]; the rel-
evance probabilities are based on the five-grade annotations
from the dataset: P (R = 1 | d, q) = 0.25 · label(d, q).

To obtain a production ranker policy, we apply supervised
LTR on 1% of the training partition [Joachims et al., 2017].
We vary the number of interventions per run; they are al-
ways evenly spread on an exponential scale, at each inter-
vention the logging policy is replaced with the latest learned
model. Ranking models are neural networks with two 32-
node hidden layers, optimized using policy gradients [Oost-
erhuis and de Rijke, 2020b]. The propensity weights for

1Our experimental implementation is publicly available at https:
//github.com/HarrieO/2021wsdm-unifying-LTR.

https://github.com/HarrieO/2021wsdm-unifying-LTR
https://github.com/HarrieO/2021wsdm-unifying-LTR


N
D

C
G

@
5

102 103 104 105 106 107 108

0.70

0.72

0.74

0.76
N

D
C

G
@

5

102 103 104 105 106 107 108

0.70

0.72

0.74

0.76

Full-Information
Affine

Intervention-Oblivious
Policy-Aware

Intervention-Aware

Figure 1: Comparison with counterfactual LTR estimators. Top:
Counterfactual runs (no interventions); Bottom: Online runs (50 in-
terventions). Results are average of 20 runs, shaded areas indicate
the 90% confidence bounds; x-axis: number of logged queries.

training clicks are clipped at 10/
√
|D| to reduce variance.

The following baseline methods are used: (i) The poli-
cy-aware estimator [Oosterhuis and de Rijke, 2020a]. (ii) The
affine estimator [Vardasbi et al., 2020]. (iii) Pairwise Dif-
ferentiable Gradient Descent (PDGD) [Oosterhuis and de
Rijke, 2018]. (iv) Biased-PDGD, PDGD without the debi-
asing weights. (v) Counterfactual Online Learning to Rank
(COLTR) [Zhuang and Zuccon, 2020].

7 Results and Discussion
For our comparison with existing counterfactual LTR meth-
ods, we consider Figure 1 which displays the performance of
LTR using different counterfactual estimators.

The top of Figure 1 displays performance in the counterfac-
tual setting where the logging policy is static. Very clearly the
intervention-aware estimator quickly reaches a higher perfor-
mance than the other methods, this is expected since it is the
only unbiased estimator of the three. While the theory guar-
antees that intervention-aware estimator will converge at the
optimal performance, we are unable to observe the number of
queries it requires to do so. The bottom of Figure 1 regards
an online setting with 50 online interventions. The online
interventions have a clear positive effect leading to a higher
mean performance for all estimators. However, this also in-
troduces an enormous amount of variance to the policy-aware
and intervention-oblivious estimators. In stark contrast, the
intervention-aware estimator hardly has an increase in vari-
ance while it also learns much faster than the other estima-
tors. Moreover, it is now able to reach optimal performance
with roughly a million logged queries.

We therefore conclude that the intervention-aware estima-
tor leads to higher performance than existing counterfactual
estimators, especially when online interventions take place.

Figure 2 compares the performance of the intervention-
aware estimator with online LTR methods. The top of Fig-
ure 2 shows that the intervention-aware estimator applied
with 100 interventions provides performance comparable to
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Figure 2: Comparison with online LTR methods. Results are aver-
ages of 20 runs, shaded areas indicate the 90% confidence bounds;
x-axis: number of logged queries.

PDGD applied fully online (an intervention at each query).
We can conclude that, aside from a small difference before
2 · 104 queries, the intervention-aware estimator appears to
match state-of-the-art online LTR performance without need-
ing the costly overhead of constant interventions.

The bottom of Figure 2 considers the performance of
PDGD when not applied fully online. We see that PDGD con-
verges at very suboptimal performance when provided 100 or
less interventions; this observation does not contradict the ex-
isting theory since PDGD is not proven to be unbiased w.r.t.
ranking metrics. Its suboptimal convergence in not fully-
online settings makes PDGD very unreliable in practice; we
conclude that the intervention-aware estimator remains the
safer and more reliable choice for these settings.

8 Conclusion
This paper has introduced an intervention-aware estima-
tor which corrects for position-bias, trust-bias, and item-
selection bias, and considers the effect of online interven-
tions. Our results show that the intervention-aware estima-
tor outperforms existing counterfactual LTR estimators, and
greatly benefits from online interventions. Moreover, with
only 100 interventions it can reach performance compara-
ble to state-of-the-art online LTR methods. Because the
intervention-aware estimator appears to be the most reliable
method for both counterfactual and online LTR, we hope its
introduction further unifies the division between these fields.
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