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ABSTRACT
Optimizing recommender systems based on user interaction data

is mainly seen as a problem of dealing with selection bias, where

most existing work assumes that interactions from different users

are independent. However, it has been shown that in reality user

feedback is often influenced by earlier interactions of other users,

e.g. via average ratings, number of views or sales per item, etc. This

phenomenon is known as the bandwagon effect.
In contrast with previous literature, we argue that the band-

wagon effect should not be seen as a problem of statistical bias. In

fact, we prove that this effect leaves both individual interactions

and their sample mean unbiased. Nevertheless, we show that it can

make estimators inconsistent, introducing a distinct set of problems

for convergence in relevance estimation. Our theoretical analysis

investigates the conditions under which the bandwagon effect poses

a consistency problem and explores several approaches for mitigat-

ing these issues. This work aims to show that the bandwagon effect

poses an underinvestigated open problem that is fundamentally

distinct from the well-studied selection bias in recommendation.
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1 INTRODUCTION
One of the main challenges in optimizing Recommender Systems

(RecSys) is correctly capturing user preferences from historical in-

teraction data [17, 20, 21, 38, 50]. A widely adopted approach is to

train a model to predict known ratings and then apply it to previ-

ously unobserved user-item pairs [35, 48, 54]. However, in the last

decade it has become apparent that observed interactions are often a

very skewed representation of the actual user preferences [4, 35, 47].

In particular, ratings are known to be affected by various forms of
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selection bias, such as popularity bias [47], positivity bias [35] or po-
sition bias [34]. Popularity bias, for instance, occurs because as most

interactions involve only a small number of very popular items,

the patterns in observed ratings may not necessarily extrapolate to

the data as a whole [4, 35, 45, 47]. It is now well understood that

ignoring statistical biases during optimization is likely to lead to

suboptimal recommendation performance [4, 18, 45] and numerous

solutions have been proposed to address various forms of selection

bias in recommendation data [18, 22, 39, 40, 40, 43, 45, 57, 63].

In this work, we will investigate the related but fundamentally

distinct bandwagon effect, also referred to as herding or confor-
mity bias. Despite being observed by multiple studies, this often-

overlooked effect occurs because users tend to follow the behavior

and opinions of others [12, 46]. That is, if a user is told that many

other users have liked an item, they themselves become more likely

to give a positive rating. Conversely, when a user is told that many

other users dislike an item, their own rating is likely to become

lower. Several studies have observed this behavior when exposing

the average rating from previous users [1, 7, 12, 51] and analogous

trends have also been reported for implicit feedback [15, 36]. Con-

sequently, the bandwagon effect can pose a serious problem when

trying to infer user preferences from interaction data.

Despite its well-known existence, there have only been limited

attempts at reducing the influence of the bandwagon effect [30,

56, 65] and few authors have theoretically analyzed it in statistical

terms [60, 61]. Our work will build on a mathematical model pro-

posed by Xie et al. [60, 61], who in line with earlier literature [56, 65]
interpret the bandwagon effect as a problem of statistical bias.

In this work, we provide a rigorous theoretical analysis of the

bandwagon effect and its statistical impact on rating and Click-

Through Rate (CTR) estimation. In stark contrast with previous

work, we prove that a simple form of bandwagon effect of Xie

et al. does not introduce statistical bias, as both individual ratings

and their sample mean yield unbiased estimates under the effect.

Nonetheless, our analysis also reveals that the bandwagon effect

can create serious problems for convergence by making the sam-

ple mean inconsistent. Therefore, despite not being a bias issue,

the bandwagon effect can still introduce significant errors during

optimization. To understand when this may pose a problem, we

theoretically prove a condition under which inconsistency is guar-

anteed to arise for the sample mean. Furthermore, our theoretical

and simulated results show that even when an estimator is consis-

tent, the convergence can still be so slow that finding the true user

preferences becomes practically infeasible. We therefore investigate

whether existing debiasing methods can be adapted to handle these

convergence issues. However, as none of our methods are able to

combine theoretical guarantees with robust empirical performance,

we conclude that the bandwagon effect currently remains an open

problem that needs more attention in future work.
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Figure 1: Impact of selection bias and bandwagon effect on average rating estimation. Under popularity bias, users are less
likely to interact with unpopular items, leaving most of their ratings unobserved. Under the bandwagon effect, new ratings are
skewed in the direction of previous users’ opinion, with larger group size eliciting a stronger effect.

2 RELATEDWORK
2.1 Debiasing Interactions for Recommendation
Learning from user interactions has a long tradition in the field of

recommender systems [16, 25, 32, 35, 45]. A common approach is to

cast the recommendation problem as a rating prediction task where

the goal is to predict the ratings a user would give to items [16,

25, 32]. However, one should not straightforwardly base the opti-

mization on the ratings observed in interaction logs as they are

often not representative of actual user preferences due to selec-

tion bias [16, 32]. The most well-known and well-studied form of

bias in rating data is popularity bias: a small selection of popu-

lar items receives the large majority of user ratings and is thus

grossly overrepresented [4, 35, 47]. Positivity bias is also prevalent:

users may be more likely to leave a rating on items they like; con-

sequently, low ratings become underrepresented in the resulting

interaction data [35]. As seen in Figure 1 (top), if popular items

that attract the majority of ratings also happen to be more liked by

users (i.e. receive higher ratings), the average rating estimate from

observed ratings becomes skewed towards a higher value. Schnabel

et al. [45] showed that not accounting for selection bias makes

the optimization procedure focus on statistically overrepresented

user-item combinations. As a solution, they propose to use Inverse

Propensity Scoring (IPS) to unbiasedly estimate and optimize the

performance of a system [29]. Debiasing for recommendation has

become a very popular topic in recent years: for example, Wang

et al. [57] propose a doubly robust estimator that combines IPS

with regression estimates; Saito et al. [40] adapted the IPS matrix

factorization approach to debias click data instead of ratings; and

Jeunen and Goethals [22] incorporate a prior distribution to avoid

overestimation during prediction.

Selection bias is also widespread in clicks. Its most well-studied

form is position bias, which occurs when the position at which an

item is displayed heavily impacts the attention the item will receive,

and thus how many users will click on it [8]. Similar to ratings, IPS

is a popular method to correct for selection bias in clicks [23, 33].

The problem of selection bias in explicit feedback, i.e. ratings,

and implicit feedback, e.g. clicks, is thus well recognized and has

been addressed extensively by the existing literature [16, 22, 23, 25,

32, 33, 35, 40, 45, 57]. This can lead to the impression that learning

from interactions is mainly a selection bias problem. Nevertheless,

our current work on the bandwagon effect will show that this is

definitely not the case.

2.2 The Bandwagon Effect
The bandwagon effect, or herding, describes a phenomenon whereby

individuals tend to exhibit a greater affinity towards an item when

they believe other individuals also like it [37, 46]. The decisions of

earlier individuals can propagate through information cascades to in-
dividuals also taking the same decision later, leading to snowballing

effects, as well documented in social psychology, economics and

finance, and, more recently, web information systems [3, 5, 7, 37].

Online platforms frequently include various social cues next to

items to assist users with their choice, e.g. the number and the aver-

age value of previous user ratings. Numerous studies have shown

that users actively leverage such informationwhenmaking purchas-

ing or consumption decisions [1, 10, 12, 13, 15, 19, 24, 36, 41, 42, 51].

Hanson and Putler [15] found that artificially inflating download

counts for some of the products on a software download service

led to those products receiving more subsequent downloads than

their unaltered counterparts. Similarly, Qin et al. [36] report that

Chrome Web Store users rarely click on items displayed with a low

download count. Flanagin and Metzger [12] noted that users ex-

posed to the average rating also rated movies closer to that average.

Analogously, Sundar et al. [51] found that participants reported

higher purchasing intent for high-rated items over low-rated items

and that this effect arose from an improved perception of quality

and value. Both studies also reported that the strength of the effect

was positively correlated with the item’s number of ratings, consis-

tent with earlier works associating larger group size with stronger

herding [2, 19, 27]. Altogether, these observations suggest that users

incorporate the experience of others into their own judgements and

the strength of this effect is correlated with the size of the group.

This phenomenon can have a number of negative consequences.

On an individual level, the bandwagon effect can be so strong that

users may act against their own interests: Dholakia and Soltysinski

[10] highlight that eBay users frequently bid on items that already

have many bids, whilst ignoring comparable or superior listings

with fewer bids. However, another consequence of the bandwagon

effect – and the focus of this paper – is the difficulty it brings to

estimating item relevance from user interactions. In the pioneering

experiment of Salganik et al. [41], a large number of sequentially
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arriving participants browsed a randomly shuffled grid of the same

48 songs and could interact with songs of their choice. The partici-

pants were randomly assigned to one of nine groups, with users in

groups 2 − 9 additionally presented with the download count from

previous users from their group alongside each song. The authors

observed that songs had a higher probability of being downloaded

in a group where they already had a high number of downloads.

In contrast, a song shown next to a low download count was less

likely to get downloaded compared to the same song in groups

where it had a high or no presented download count (group 1).

Moreover, with the exception of the very best and worst songs,

as determined by the control group 1, the final ranking according

to download counts varied wildly across different groups. In their

follow-up work, Salganik and Watts [42] further showed that the

bandwagon effect may be so strong that artificially altering the

presented download count can make unpopular songs popular and

vice-versa, with only the best songs eventually recovering their

true relevance ranking. Taken together, the above results suggest

that under the bandwagon effect even a large amount of user feed-

back is not guaranteed to yield an accurate estimate of true user

preference. This is also demonstrated in Figure 1 (bottom): users’

true preferences are intertwined with the ratings of earlier users

and this influence grows as the number of ratings increases. As a

consequence, even when assuming no selection bias, true average

rating cannot be determined via the sample mean.

Recently, there has been some interest in modelling herding and

disentangling the effects of the crowd on the individual. Wang et al.

[56] propose an estimator maximizing a surrogate function of the

likelihood of the data and demonstrate the effectiveness of their

approach for prediction of subsequent ratings. Zhang et al. [65]

show that subsequent rating estimation can be further improved

by considering that some users may actually choose to distance

their opinion from the crowd. Liu et al. [30], Wei et al. [59], Zhang

et al. [66] all propose various extensions to classical recommender

models by using the rating mean and/or count as additional in-

puts. Finally, Xie, Zhong and colleagues formulate the bandwagon

process as either a rating reweighting or hidden state prediction

problem and show theoretically that the bandwagon effect slows

down the convergence of the sample mean [60, 61, 67].

Notably, most of the above works treat the bandwagon effect

as a problem of statistical bias. Furthermore, to the best of our

knowledge, only the works of Xie et al. [60, 61] and Zhong et al.

[67] attempt to establish a link between the bandwagon effect and

statistical theory. Our theoretical analysis will contrast with the

existing literature by showing that the bandwagon effect can affect

relevance estimation without introducing statistical bias.

3 BACKGROUND
3.1 Preliminaries
Before we address the bandwagon effect specifically, this section

will introduce our problem setting and the statistical properties that

our analysis will consider. For the sake of generality, we focus on

unpersonalized rating estimation, as we expect the issues observed

for this simple task to also apply to the more involved forms of

recommendation. Furthermore, our findings are not specific to
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Figure 2: Three estimators with varying bias and consistency;
bold lines show the mean estimate over 1,000 independent
runs, shaded areas indicate 90% confidence intervals. Top -
unbiased and consistent: its expected value and point of con-
vergence are both correct. Middle - biased and inconsistent:
its expected value and point of convergence are both incor-
rect. Bottom - unbiased and inconsistent: its expected value
is correct but its confidence interval will never converge.

recommendation and can be readily applied to other problems

involving relevance estimation such as CTR estimation.

In our generic unpersonalized recommendation setting, the goal

is to estimate the average preference of all users for each item. We

assume that this value 𝑝 ∈ (0, 1) exists for each item and represents

the percentage of users that truly like the item. Furthermore, users

interact with the items by assigning them binary ratings s.t. 𝑟𝑖 ∈
{0, 1} is the 𝑖’th rating for an item. While we refer to 𝑟𝑖 as a rating,

it can equally well represent many other binary interactions such

as clicks, purchases, shares, etc. As discussed in Section 2.2, in real

systems users are often able to see how many other users have

rated an item and what their average rating was, such that past

ratings can affect the behaviour of the current user. We define 𝑝 to

be the true preference or the percentage of users who like an item

when they have no knowledge of the preferences of any other users.

Our goal is then to estimate 𝑝 for a single item from the given set

of observed ratings {𝑟1, 𝑟2, 𝑟3 . . . }.
Let 𝑝𝑛 indicate an estimate of 𝑝 based on 𝑛 observed ratings. Our

analysis will investigate three important beneficial properties that

we generally desire from such an estimate. To start, we normally

want the estimate to be unbiased. In other words, in expectation it

should be equal to the true value of 𝑝:

Unbiased

(
𝑝𝑛

)
←→ E

[
𝑝𝑛

]
= 𝑝. (1)

Understandably, bias and unbiasedness have received a lot of atten-

tion in previous selection bias literature, as it is desirable to avoid

systematic errors in rating estimation [23, 34, 44, 45, 58]. However,

unbiasedness on its own does not guarantee that an estimator is

actually usable in practice.
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The second important and often overlooked property that we

may want from an estimator is consistency. An estimator is consid-

ered consistent if the estimate converges in probability to the true

value of 𝑝 as the size of available data approaches infinity:

Consistent

(
𝑝𝑛

)
←→ lim

𝑛→∞
𝑝𝑛 = 𝑝. (2)

Whilst at a first glance unbiasedness and consistency may appear

to refer to the same property, this is certainly not the case. For

example, estimators can be biased yet consistent [53] or unbiased

and inconsistent. As illustrated in Figure 2, the problem with an

unbiased inconsistent estimator is that its confidence intervals do

not converge to a zero error even as the size of the data increases

indefinitely. Thismeans its estimation errors will not disappear even

after gathering more data, thus preventing accurate convergence.

Nevertheless, whilst consistency guarantees that eventually the

estimate will be correct, the amount of data required for conver-

gence may still be unattainable in practice. Therefore, the final prop-

erty we will consider is (data) efficiency, measured by the expected

squared error (equivalent to variance for unbiased estimators):

Efficiency

(
𝑝𝑛

)
= E

[ (
𝑝𝑛 − 𝑝

)
2
]
. (3)

Overall, efficiency represents a more practical side of an estimator:

the error we can expect it to have w.r.t. the true value 𝑝 after 𝑛

samples. The effect the number of samples has on this measure can

be seen as the speed of convergence. While most existing work on

learning from user interactions focuses on correcting for bias, they

often also apply propensity clipping or self-normalization which

introduce a little bias to greatly reduce variance [23, 40, 44, 52, 62].

Our theoretical investigation will consider how the bandwagon

effect impacts all three properties: bias, consistency and efficiency.

3.2 A Formal Model of the Bandwagon Effect
The mathematical model of the bandwagon effect we will use in this

paper is a simplified version of that of Xie et al. [60, 61]. This model

represents a sequential unpersonalized recommendation scenario

where users rate the item in succession and one at a time. It assumes

there are two factors that influence the probability of a positive

value for the 𝑛’th rating (𝑟𝑛 = 1): (i) 𝑝 , the true proportion of users

who would like the item given that they do not know anything of

the other users’ preferences (no bandwagon effect); and (ii) 𝑝𝑛−1,

the mean of the ratings that have taken place previously. The rating

probability is modelled as a linear combination of these two factors:

𝑃 (𝑟𝑛 = 1) = 𝜆𝑛𝑝 + (1 − 𝜆𝑛)𝑝𝑛−1, 𝑝𝑛−1 =
1

𝑛 − 1

𝑛−1∑︁
𝑖=1

𝑟𝑖 . (4)

𝜆𝑛 ∈ [0, 1] captures the degree to which users adjust their behavior

to match that of the crowd. For example,∀𝜆𝑛 = 1 indicates a process

with no bandwagon effect and ∀𝑛 > 1 : 𝜆𝑛 = 0 a process where true

preferences play no role except for the very first user. As previously

mentioned, earlier works have shown a positive correlation with

the strength of herding and the size of the group [2, 19, 27]. We

capture this increase in effect by assuming that the influence of the

sample mean cannot decrease as the number of ratings increases:

𝜆1 = 1 ∧ (∀𝑛 > 1 : 0 ≤ 𝜆𝑛 ≤ 𝜆𝑛−1) . (5)

In addition, this assumption states that the first rating is completely

unaffected by the bandwagon effect (i.e. 𝜆1 = 1), as the first user has

no information about the preferences of others. We have chosen the

above formulation over others (e.g. [56, 65]) due to its amenability

to statistical analysis whilst still capturing the key aspects of the

bandwagon effect.

Before we begin our theoretical analysis, we will briefly discuss

two claims from earlier work by Xie and Zhong [60] so that they

can later be compared with our findings in Section 4. First, Xie and

Zhong refer to the bandwagon effect as persuasion bias, by which

they mean that the bandwagon effect biases the rating distribution

such that it no longer represents the true underlying preference.

Second, they show that as long as the lower bound of 𝜆𝑛 is above

0, the bandwagon effect will eventually be eliminated since the

sample mean 𝑝𝑛 is guaranteed to converge to the true parameter

value:

inf

𝑛∈𝑁 +
𝜆𝑛 > 0 −→ lim

𝑛→∞
𝑝𝑛 = 𝑝. (6)

Our theoretical analysis will take another critical look at the bias

and consistency of 𝑝𝑛 . Surprisingly, our findings regarding bias

heavily contrast with previous work on the bandwagon effect.

4 THEORETICAL ANALYSIS:
THE BANDWAGON EFFECT

Now that Section 3.2 has introduced our mathematical model of

the bandwagon effect, we will begin our theoretical analysis of

its effects on bias, consistency and efficiency. First, we want to

again consider the claim of previous work that the bandwagon

effect introduces bias to the rating distribution [60, 61]. From our

bandwagon model (Equation 4) it appears that the probability of

a positive rating is indeed a distortion of the true preference 𝑝 .

However, TheoremA.1 proves that the expected values of all sample

means 𝑝𝑛 and all ratings 𝑟𝑛 are actually equal to the true preference:

∀𝑛 : E[𝑝𝑛] = E[𝑟𝑛] = 𝑝. (7)

In other words, under our model, both the sample means and actual

ratings provide unbiased estimates of the true preference, corre-

sponding to either top or bottom, but not center of Figure 2. This

finding contrasts heavily with how previous work has approached

the bandwagon effect as a bias problem [30, 56, 59–61, 64, 65, 67]

and similarly, how learning from user interactions is generally also

framed as a bias problem [16, 22, 23, 25, 32, 33, 35, 40, 45, 57]. The

bandwagon effect may be seen as an increased impact of earlier

interactions on the estimate of the item’s relevance. However, in

contrast with selection bias, there is no predetermined rating value

that is disproportionally represented for the purposes of average

relevance estimation or loss minimization.

Nevertheless, the lack of bias does not mean that the bandwagon

effect does not introduce other problems. As discussed in Section 3.1,

there are other statistical properties besides unbiasedness that one

should consider. Theorem A.4 proves the following efficiency of

the sample mean, i.e. its expected (squared) error:

E
[
(𝑝𝑛 − 𝑝)2

]
= 𝑝 (1 − 𝑝)

(
1

𝑛2
+
𝑛−1∑︁
𝑖=1

1

𝑖2

𝑛∏
𝑗=𝑖+1

( 𝑗 − 1) ( 𝑗 + 1 − 2𝜆 𝑗 )
𝑗2

)
.

Consistent with our prior discussion, the above formulation reveals

that when ∀𝜆𝑛 = 1 , the variance of 𝑝𝑛 is equivalent to the variance

of sampling from the true preference 𝑝 . Conversely, when ∀𝑛 >

1 : 𝜆𝑛 = 0, the expected error does not decrease after the first
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interaction i.e. ∀𝑛 : E[(𝑝𝑛 −𝑝)2] = V[𝑝1] = 𝑝 (1−𝑝). Obviously, an
error that never decreases provides a serious convergence problem.

To investigate whether the sample mean is consistent, we look

at the value of the expected error in the limit of infinite samples.

Theorem A.5 proves the following expected error in the limit:

lim

𝑛→∞
E
[
(𝑝𝑛 − 𝑝)2

]
= lim

𝑛→∞
𝑝 (1 − 𝑝)

( 𝑛−1∑︁
𝑖=1

1

𝑖 (𝑖 + 1)

𝑛−1∏
𝑗=𝑖+1

(
1 −

2𝜆 𝑗

𝑗 + 1

))
.

Importantly, if the expected error is not zero in the limit as in

Figure 2 (bottom), the estimator is not consistent and vice-versa.

Based on this fact, we prove a novel necessary condition for the

consistency of 𝑝𝑛 in Theorem A.6:

∀𝜖 : lim

𝑛→∞
Pr( |𝑝𝑛 − 𝑝 | > 𝜖) = 0 −→ lim

𝑛→∞

𝑛∑︁
𝑖=1

𝜆2

𝑖 = ∞. (8)

In other words, if the sample mean is consistent (corresponds to

Figure 2, top), the sum of 𝜆2

𝑖
terms is unbounded. Equivalently, con-

vergence of lim𝑛→∞
∑𝑛
𝑖=1

𝜆2

𝑖
leads to inconsistency. We note that

whilst the sufficient condition of Xie and Zhong [60] (Equation 6)

highlights the situations where we can guarantee consistency, it

cannot be used to guarantee inconsistency. For instance, one cannot

use it to show whether 𝜆𝑛 = 𝑛−1
leads to issues with convergence

as inf𝑛∈𝑁 + 𝜆𝑛 = 0. On the other hand, as lim𝑛→∞
∑𝑛
𝑖=1

𝑖−2
is finite,

Theorem A.6 shows that 𝑝𝑛 is inconsistent. Our condition can thus

be seen as complementary to the sufficient condition of earlier work,

qualifying the set of 𝜆 sequences where inconsistency is certain.

We can also leverage Theorem A.5 to quantify the asymptotic

expected absolute error for any specific 𝜆 values. For instance,

Proposition A.8 proves that for 𝜆𝑖 = 𝑐
𝑖−1

with 𝑐 ∈ (0, 1):
lim

𝑛→∞
E[|𝑝𝑛 − 𝑝 |] ≥ 2𝑝 (1 − 𝑝) exp

(
− 𝑐𝜙 (𝑐, 1, 2) − 𝑐2𝜙

(
𝑐2, 2, 2

) )
s.t. 𝜙 (𝑧, 𝑠, 𝑎) ≡

∞∑︁
𝑘=0

𝑧𝑘

(𝑎 + 𝑘)𝑠 . (9)

Similar bounds may also be derived for other 𝜆 formulations.

Our analysis proved that neither the sample mean 𝑝𝑛 nor the

individual ratings 𝑟𝑛 are biased, a finding that appears to heavily

contrast with earlier work that casts the bandwagon effect as a

problem of bias [30, 56, 59–61, 64, 65, 67]. We speculate that the

bias framingmay at least in part stem from the dependency between

ratings. More specifically, conditioning the expectation of 𝑝𝑛 and

𝑟𝑛 on an earlier 𝑝𝑚 by Theorem A.1 and Proposition A.7 leads to:

∀𝑛 > 𝑚 > 1 : E[𝑝𝑛−1 | 𝑝𝑚] − 𝑝 = (𝑝𝑚 − 𝑝)
𝑛−1∏
𝑖=𝑚+1

(
1 − 𝜆𝑖

𝑖

)
, (10)

∀𝑛 > 𝑚 > 1 : E[𝑟𝑛 | 𝑝𝑚] − 𝑝 = (1 − 𝜆𝑛)E[𝑝𝑛−1 − 𝑝 | 𝑝𝑚] . (11)

This can be seen as a conditional bias, i.e. conditioned on any 𝑝𝑚
being incorrect, all subsequent ratings and sample means are biased:

∀𝑛 > 𝑚 ≥ 1 : E[𝑝𝑛 | 𝑝𝑚 ≠ 𝑝] ≠ 𝑝. (12)

We speculate that previous work has interpreted this conditional

bias as bias in the rating distribution and sample mean. Nonetheless,

as discussed above, our bandwagon effect model does not lead to

systematic errors in relevance estimation. In Section 7, we will

argue that therefore the bandwagon effect is best interpreted as a

problem of consistency and not statistical bias.

To summarize the main findings of our theoretical analysis: we

have proven that the bandwagon effect does not introduce bias to

the rating distribution but can make the sample mean inconsistent.

We have also derived a necessary condition for consistency, expand-

ing on prior work. Lastly, our formulation of the expected error can

quantify the asymptotic error for any specific 𝜆 values.

5 BANDWAGON EFFECT MITIGATION
5.1 Correcting for the Bandwagon Effect
We have established that while the bandwagon effect does not make

ratings biased, it can lead to convergence problems. As possible

solutions, inspired by analogous approaches in click debiasing [6,

55], we will propose an affine and a maximum likelihood estimator.

Firstly, similar to earlier unbiased Learning to Rank work [55],

we notice that the model in Equation 4 is invertible. We therefore

propose an intermediate affine estimate based on a single rating:

𝑟𝑖 =
𝑟𝑖 − (1 − 𝜆𝑖 )𝑝𝑖−1

𝜆𝑖
. (13)

Theorems A.9 and A.10 prove that our intermediate estimator is

both unbiased and conditionally unbiased w.r.t. previous ratings:

∀𝑖 > 𝑗 ≥ 1 : E[𝑟𝑖 | 𝑟 𝑗 ] = E[𝑟𝑖 | 𝑝 𝑗 ] = E[𝑟𝑖 ] = 𝑝. (14)

Therefore, using 𝑟𝑖 instead of 𝑟𝑖 in an averaging estimator may allow

us to speed up convergence by incorporating only the information

about the user’s true preference without reinforcing the previous

𝑖 − 1 ratings. With this in mind, we propose our affine estimator

that uses all of the observed ratings via a weighted mean:

𝑝𝑛 =
1∑𝑛

𝑖=1
𝜔𝑖

𝑛∑︁
𝑖=1

𝜔𝑖𝑟𝑖 , s.t. ∀ 1 ≤ 𝑖 ≤ 𝑛 : 𝜔𝑖 > 0. (15)

Clearly 𝑝𝑛 is also unbiased as it is simply a weighted average over

the unbiased estimates 𝑟𝑖 . Additionally, Theorem A.14 proves it is

consistent if

∑𝑛
𝑖=1
(𝜔𝑖/𝜆𝑖 )2 grows slower in 𝑛 than (

∑𝑛
𝑖=1

𝜔𝑖 )2 , with
Corollary A.15 providing specific conditions ∀𝜔𝑖 = 1 and ∀𝜔𝑖 = 𝜆𝑖 .
Furthermore, Theorem A.13 proves 𝑝𝑛 has the following variance:

V[𝑝𝑛] =
1(∑𝑛

𝑖=1
𝜔𝑖

)
2

𝑛∑︁
𝑖=1

𝜔2

𝑖

𝜆2

𝑖

(
𝑝 (1 − 𝑝) − (1 − 𝜆𝑖 )2V[𝑝𝑖−1]

)
. (16)

Unfortunately, interpreting V[𝑝𝑛] is not straightforward as in addi-

tion to the choice of 𝜔𝑖 it depends on both the rating values as well

as their order. Analogous to its use in selection bias [23, 49], one can

also apply clipping to the bandwagon effect, e.g.
ˆ𝜆𝑖 = max (𝜆𝑖 , 𝜏) s.t.

𝜏 > 0. However, in contrast with IPS, 𝑟𝑛 and 𝑝𝑛 would remain unbi-

ased, though not conditionally unbiased (Corollary A.11): clipping

or misestimation s.t.
ˆ𝜆𝑖 ≠ 𝜆𝑖 may still affect the rate of convergence.

Secondly, inspired by the approach of click models [6], we also

propose the approximate maximum likelihood estimator 𝑝∗𝑛 , ob-
tained via iterative application of Newton’s method [14] to maxi-

mize the log-likelihood of the data 𝐿:

𝐿 =

𝑛∑︁
𝑖=1

𝑟𝑖 ln

(
𝜆𝑖𝑝
∗
𝑛 + (1 − 𝜆𝑖 )𝑝𝑖−1

)
+ (1 − 𝑟𝑖 ) ln

(
1 −

(
𝜆𝑖𝑝
∗
𝑛 + (1 − 𝜆𝑖 )𝑝𝑖−1

) )
.

(17)

Because both the likelihood and the solution found by Newton’s

method appear intractable, we are unable to prove this estimator is

unbiased. Nonetheless, maximum likelihood estimators have been
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very effective when applied to user interactions in the past [6, 68]

and can be consistent under certain feasible conditions [9].

5.2 Bandwagon Effect Estimation
Both our proposed estimators require accurate 𝜆 values to capture

the bandwagon effect well. Inspired by the experiments of Salganik

et al. [41], we propose the following parameter estimation scheme

that can be applied when dealing with one or more items affected

by the same bandwagon effect.

We will assume that 𝜆 values are shared across a subset of 𝐾 ≥ 1

items and that all users are randomly assigned to one of𝑀 bins s.t.

users give 𝑛 ratings per item and are only presented with rating

information regarding users in the same bin. Let 𝑝𝑘 indicate the

true preference of all users w.r.t. item 𝑘 (analogous to 𝑝) and ˆ𝜆𝑖 an

estimate of 𝜆𝑖 . The log-likelihood of this data is then:

𝐿 =

𝐾∑︁
𝑘=1

𝑀∑︁
𝑚=1

𝑛∑︁
𝑖=1

𝑟𝑘𝑚𝑖 ln

(
ˆ𝜆𝑖𝑝

𝑘 +
(
1 − ˆ𝜆𝑖

)
𝑝𝑘𝑚𝑖−1

)
+ (1 − 𝑟𝑘𝑚𝑖 ) ln

(
1 − ˆ𝜆𝑖𝑝

𝑘 −
(
1 − ˆ𝜆𝑖

)
𝑝𝑘𝑚𝑖−1

)
.

(18)

The maximum likelihood estimate can be found by maximizing 𝐿,

for instance through the iterative application of Newton’s method.

In order to get
ˆ𝜆𝑖 values for 𝑖 > 𝑛, we propose fitting them to a

curve, e.g.
ˆ𝜆𝑖 = 𝑎+ (1−𝑎) ·𝑏𝑖−1

where 𝑎 ∈ [0, 1] and 𝑏 ∈ (0, 1). Note
that as 𝑝𝑘 may be unknown, one may instead estimate 𝜆𝑖 values by

using its unbiased estimate 𝑝𝑘 = 1

𝑀𝑛

∑𝑀
𝑚=1

∑𝑛
𝑖=1

𝑟𝑘𝑚𝑖 .

6 EXPERIMENTS AND RESULTS
6.1 Experimental Setup
To investigate how the bandwagon can affect convergence and

whether our proposed estimators can mitigate negative effects, we

performed several experiments with simulated user interactions.

For an item with true relevance 𝑝 = 0.4, we generated user

interactions under three conditions: a no bandwagon setting where

∀𝜆𝑖 = 1, a weak bandwagon setting where 𝜆𝑖 = 0.6 + 0.4 · 0.9𝑖−1

and a strong bandwagon setting where 𝜆𝑖 = 0.1 + 0.9 · 0.95
𝑖−1

.

Our comparison includes the following four estimators: (i) the

sample mean 𝑝𝑛 (Equation 4); (ii) affine mean 𝑝𝑛 , which is the

affine estimator (Equation 15) with uniform weights ∀𝑖 : 𝜔𝑖 = 1;

(iii) affine weighted 𝑝𝑛 , which is the affine estimator but with the

weights ∀𝑖 : 𝜔𝑖 = 𝜆𝑖 ; and (iv) the maximum likelihood estimate

𝑝∗𝑛 (Equation 17). For statistical significance, the entire sampling

process was repeated 1,000 times independently, all our graphs

include 90% confidence bounds over these independent runs.

Furthermore, to investigate how sensitive our estimators are

to misestimated
ˆ𝜆 values, we computed the estimator values with

both the actual 𝜆 values and estimated
ˆ𝜆 values. We followed the

estimation scheme of Section 5.2, generating additional ratings

with 𝐾 = 1, 𝑝1 = 0.4, 𝑀 = 20 and 𝑛 = 100 to represent a plausible

production-level scenario [41]. The result obtained from fitting a

curve:
ˆ𝜆𝑖 = 𝑎 + (1 − 𝑎) · 𝑏𝑖−1

where 𝑎 ∈ [0, 1] and 𝑏 ∈ (0, 1) to the

data was:
ˆ𝜆𝑖 = 0.33 + 0.67 · 0.92

𝑖−1
. We only report the results for

misestimated
ˆ𝜆 values in the strong bandwagon setting, due to high

similarity with the weak setting.

E
s
t
i
m
a
t
e
d
V
a
l
u
e

100 101 102 103 104 105 1060.0

0.5

1.0

Number of Samples

No Bandwagon Weak Bandwagon Strong Bandwagon

Figure 3: Convergence of 𝑝𝑛 under various levels of band-
wagon. Solid and dashed lines indicate points where a 90%

confidence interval over 1,000 independent runs is within 0.05

and 0.01 of 𝑝 respectively, 𝑝 = 0.4.

6.2 Estimator Bias and Convergence
Our results are visualized in Figure 3, which displays the conver-

gence rate of the sample mean under various levels of bandwagon

effect, and Figure 4, which shows the behavior of all estimators

with known 𝜆 in the weak and strong bandwagon settings.

First, we consider the influence of the bandwagon effect on the

sample mean (𝑝𝑛): from Figure 3 it is immediately clear that the

effect’s strength has a significant impact on the rate of convergence.

Whilst under no bandwagon effect the confidence intervals are

within 0.05 of 𝑝 after fewer than 300 samples and within 0.01 after

roughly 8,000 samples, under the weak bandwagon effect these

numbers exceed 1,000 and 33,000 respectively. Under the strong

bandwagon effect the confidence intervals increase even further, ex-

ceeding 0.05 after 10
6
samples. However, in all cases the confidence

bounds still appear to decrease steadily, suggesting that 𝑝𝑛 will

converge eventually, as also predicted by the sufficient condition

for consistency (Equation 6). Nevertheless, it is also clear that the

bandwagon effect introduces a significant loss in data efficiency. In

practice, this could mean that an infeasibly large amount of data is

required to get a decent estimate under a strong bandwagon effect.

Next, we examine the impact on the bias of the sample mean and

other estimators. As shown in Figure 4 (top, middle), even prior to

convergence, all estimators including 𝑝𝑛 make negligible errors in

expectation, strongly suggesting that they are all unbiased. Whilst

the unbiasedness was already theoretically proven for 𝑝𝑛 and the

affine estimators 𝑝𝑛 and 𝑝𝑛 , it is surprising to see that even at low

numbers of samples the expected error of the maximum likelihood

estimate 𝑝∗𝑛 appears negligible. Our results thus seem to indicate

that all the estimators are unbiased or have an extremely small bias,

further confirming that the bandwagon effect is not a bias problem.

We then focus on the weak bandwagon condition (Figure 4 top).

Here, all estimators converge to 𝑝 , at a rate similar to that of 𝑝𝑛 . That

the sample mean and affine estimators converge is not surprising, as

the setting meets the sufficient condition for consistency. However,

in this scenario none of the estimators actually provide a clear

improvement over the sample mean, indicating that they are unable

to apply significant beneficial corrections to the bandwagon effect.

The lack of improvement over 𝑝𝑛 is particularly concerning as this

indicates that our estimators are similarly affected by the loss of

data efficiency induced by the bandwagon effect.
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Figure 4: Convergence of 𝑝𝑛 (left), 𝑝𝑛 (center) and 𝑝∗𝑛 (right) compared to 𝑝𝑛 with 𝑝 = 0.4 and 𝜆𝑖 = 0.6 + 0.4 · 0.9𝑖−1 (top),
𝜆𝑖 = 0.1 + 0.9 · 0.95

𝑖−1 (center and bottom) and misestimated ˆ𝜆𝑖 = 0.33 + 0.67 · 0.92
𝑖−1 (bottom); bold lines show the mean estimate

over 1,000 independent runs, shaded areas indicate 90% confidence intervals.

Nonetheless, one may expect the convergence to slow down

even further in the strong bandwagon setting shown in the middle

row of Figure 4. Here, both the affine and maximum likelihood esti-

mators are actually able to converge on the true value much sooner

than the sample mean. However, confidence bounds of the former

also become wider after roughly 10 sampled ratings and stay wider

until roughly 1,000 samples, with the weighting of 𝑝𝑛 seemingly re-

ducing this effect when compared with 𝑝𝑛 . Thus during this period,

the sample mean actually appears to be a more reliable choice in

terms of expected error. This observation illustrates that choosing

between estimators is not always straightforward, as in this case

the optimal choice between 𝑝𝑛 and 𝑝𝑛 depends on the number of

samples that are available. Importantly, the maximum likelihood

estimator does not have this drawback: its confidence bounds never

appear wider than the sample mean while still converging quicker.

Across both settings, we have thus observed no noticeable bias

problems for any estimator. Importantly, the sample mean has

serious convergence issues under the strong bandwagon, where the

other estimators are able to converge much sooner. Nonetheless,

despite its high efficiency, the affine estimator was also found to

initially have the highest variance. It appears that when 𝜆 values are

known, the maximum likelihood estimator is the most reliable in

spite of the lack of proven theoretical guarantees for this estimator.

However, even the maximum likelihood estimator is unable to fully

undo the slowdown introduced by either level of the bandwagon

effect, highlighting the substantial impact this effect still has on

effective sample size and relevance estimation.

6.3 Bandwagon Misestimation
To investigate the effect of misestimated

ˆ𝜆 values, we look at the

bottom row in Figure 4. In particular, it shows what happens when

we underestimate a strong bandwagon effect. Clearly, we see that

no noticeable bias has been introduced to any estimator. Interest-

ingly, the affine estimators actually suffer less from initial variance:

however, we speculate that overestimating the bandwagon effect

could instead enlarge the variance. Nevertheless, all our estimators

converge substantially slower than when 𝜆 was known (cf. middle

row), with their confidence bounds now only moderately smaller

than those of 𝑝𝑛 . We thus conclude that the ability of our estimators

to accelerate convergence is very sensitive to correct estimation of

𝜆, where we do not observe an advantage for any of the estimators.

The results with misestimated
ˆ𝜆 values demonstrate that 𝜆 es-

timation is a crucial part of effective bandwagon correction. Re-

searching bandwagon estimation methods is therefore an important

task for future work: since without robust estimation, correcting

for the bandwagon effect appears to remain an open problem.

7 DISCUSSION
So far, we have investigated the bandwagon effect in both theoreti-

cal and empirical terms. In contrast with the well-studied selection

bias [22, 43, 45, 63], our experimental results indicate that the band-

wagon effect mainly poses a problem for convergence without

introducing noticeable statistical bias. Yet the effect is generally

referred to as a bias by previous work [56, 60, 61, 67]. This raises a
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higher-level conceptual question: should the bandwagon effect be
interpreted as a bias? The remainder of this section will contrast

three possible perspectives on this question that we deem valuable

for the understanding of the field.

On one hand, both our theoretical and empirical results clearly

indicate that statistical bias is not the issue. The expected value of

both the sample mean and individual ratings is equal to the true rel-

evance, with no noticeable error in the mean value of each estimator

in our experiments. Therefore, in statistical terms, it seems that we

are purely dealing with convergence and consistency issues and not

with bias. This distinction is important as solutions to inconsistency

may be very different than those for bias: i.e. our experimental re-

sults suggest that methods based on debiasing techniques are not

particularly effective at solving convergence issues.

On the other hand, our theoretical analysis also revealed that

the bandwagon effect introduces conditional bias: given that there

is an error in the sample mean after𝑚 ratings, the expected value

of any subsequent rating or sample mean will be incorrect. In other

words, under the bandwagon effect any errors in the sample mean,

which are unavoidable in practice, will subsequently introduce

(conditional) bias. A proponent of the first perspective could argue

that this view ismistaking convergence issues for bias. Nevertheless,

we argue that as long as both parties understand the difference

between bias and conditional bias, their disagreement is mainly

about semantics and not on the underlying nature of the issue.

Alternatively, one could consider the bandwagon effect as actu-

ally changing the true preferences of users. This view poses that the

observed ratings are not a distortion of the true preferences but that

the actual preferences of users have changed. One could argue that

this is in line with the users’ experience as they do not make a con-

scious choice to alter their ratings in response to others’ feedback

but aim to assign ratings according to their satisfaction. Instead,

their enjoyment of a product may still be subconsciously influenced

by the enjoyment of others. Thus the advantage of this view is

the apparent alignment with the users’ own experience. However,

their experience is precisely unaware of any subconscious factors

such as the bandwagon effect. The danger is that by not viewing

the bandwagon effect as a misrepresentation of preferences, one

may be less inclined to correct for it. However, when training a

recommender system, it surely seems critical to know whether high

ratings were given because a user was affected by previous users,

or whether they made this decision solely based on the item itself.

Apart from these conceptual perspectives, we strongly argue

that in statistical terms the bandwagon effect is a problem of con-

vergence and consistency and not of statistical bias. Nevertheless,

outside of pure statistical terms, we think that each of the three

views brings a valuable perspective to the field. Most importantly,

we think the field should be aware of the difference between the

bandwagon effect and statistical bias. As long as this distinction is

understood, we think it is acceptable if one chooses to conceptually

categorize the bandwagon effect as another form of bias, although

we would advise against it. Overall, our work aims to promote a

more complete statistical understanding of the issues surround-

ing user interactions that goes beyond bias to include variance,

consistency and convergence.

8 CONCLUSION
In this paper we examined the bandwagon effect: an underexplored

phenomenon where users’ interactions are affected by interactions

of earlier users. While previous work has approached the band-

wagon effect as problem of bias [60, 61], our theoretical analysis

revealed that it does not add bias to the rating distribution nor to

the sample mean. Instead, we have shown that it is better viewed as

a problem of convergence and consistency. We derived a necessary

condition for consistency under the effect, thereby also adding to

earlier consistency claims [60]. We then proposed several novel

estimators to mitigate the convergence issues. While our empiri-

cal analysis revealed that our novel estimators can substantially

increase the convergence rate under a strong bandwagon effect, all

estimators also carry their own limitations. Moreover, even when

using the empirically best-performing estimator, our purposely

simple model of the bandwagon effect still significantly increases

the number of samples required for accurate relevance estimation.

Future work may wish to examine the impact of more complex

bandwagon models (e.g. [65, 67]) as well as parameter and rating

scale choices on bias and convergence, both in unpersonalized as

well as personalized settings. For the latter case in particular, user

preference may be further associated with the time of arrival (e.g.

item’s fans are both more likely to like it and to rate it early) or 𝜆

values for one timestep may vary across users. Nevertheless, even

under our simple model, our findings lead us to conclude that there

is no clear and well-understood solution for the bandwagon effect.
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A APPENDIX
Theorem A.1 (Bias of sample mean and single rating). 𝑝𝑛

and 𝑟𝑛 (Equation 4) are unbiased estimators of parameter 𝑝 for all 𝑛:

∀𝑛 : E [𝑝𝑛] = E [𝑟𝑛] = 𝑝. (19)

Proof. E[𝑝1] = E[𝑟1] = 𝑝 by Equations 4-5. Then by induction:

E[𝑝𝑛] =
(𝑛 − 1)E[𝑝𝑛−1] + E[𝑟𝑛]

𝑛
=
𝜆𝑛𝑝 + (𝑛 − 𝜆𝑛)E[𝑝𝑛−1]

𝑛
= 𝑝.

𝑟𝑛 is unbiased as it is a weighted sum of 𝑝 and unbiased E[𝑝𝑛−1]:

E [𝑟𝑛] = E [𝜆𝑛𝑝 + (1 − 𝜆𝑛) 𝑝𝑛−1] = 𝜆𝑛𝑝 + (1 − 𝜆𝑛)E[𝑝𝑛−1] = 𝑝. □

Lemma A.2 (Variance of 𝑟𝑖 ). Under the bandwagon effect the
variance of any rating 𝑟𝑖 is 𝑝 (1 − 𝑝).

Proof. By Theorem A.1:

∀𝑖 : V[𝑟𝑖 ] = E
[
𝑟2

𝑖

]
− E2 [𝑟𝑖 ] = E[𝑟𝑖 ] − E2 [𝑟𝑖 ] = 𝑝 − 𝑝2 . □

Lemma A.3. Covariance of 𝑝𝑛−1 and 𝑟𝑛 is (1 − 𝜆𝑛)2V[𝑝𝑛−1].
8
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Proof.

Cov[𝑝𝑛−1, 𝑟𝑛] = E[(𝑝𝑛−1 − 𝑝) (𝜆𝑛𝑝 + (1 − 𝜆𝑛)𝑝𝑛−1 − 𝑝)] (20)

= (1 − 𝜆𝑛)2V[𝑝𝑛−1] . □

Theorem A.4 (Efficiency of sample mean). The efficiency of
the sample mean under the bandwagon effect defined in Equation 4 is

E
[
(𝑝𝑛 − 𝑝)2

]
= 𝑝 (1 − 𝑝)

(
1

𝑛2
+
𝑛−1∑︁
𝑖=1

1

𝑖2

𝑛∏
𝑗=𝑖+1

( 𝑗 − 1) ( 𝑗 + 1 − 2𝜆 𝑗 )
𝑗2

)
.

Proof. By Theorems A.1 and Lemmas A.2, A.3:

E
[
(𝑝𝑛 − 𝑝)2

]
=
(𝑛 − 1)2

𝑛2
V[𝑝𝑛−1] +

2(𝑛 − 1)
𝑛2

Cov[𝑟𝑛, 𝑝𝑛−1]

+ V[𝑟𝑛]
𝑛2

=
(𝑛 − 1) (𝑛 + 1 − 2𝜆𝑛)

𝑛2
V[𝑝𝑛−1] +

𝑝 (1 − 𝑝)
𝑛2

. (21)

The proof is completed by unrolling the process toV[𝑝1] = 𝑝 (1−𝑝)
and collecting all the terms. □

Theorem A.5. The asymptotic effiency of the sample mean is:

lim

𝑛→∞
E
[
(𝑝𝑛 − 𝑝)2

]
= lim

𝑛→∞
𝑝 (1 − 𝑝)

( 𝑛−1∑︁
𝑖=1

1

𝑖 (𝑖 + 1)

𝑛−1∏
𝑗=𝑖+1

(
1−

2𝜆 𝑗

𝑗 + 1

))
.

Proof. By re-grouping numerators and denominators in the

product of Theorem A.4 and cancelling out extra terms:

E
[
(𝑝𝑛 − 𝑝)2

]
= 𝑝 (1 − 𝑝)©« 1

𝑛2
+
𝑛−1∑︁
𝑖=1

𝑛 + 1 − 2𝜆𝑛

𝑖 (𝑖 + 1)𝑛

𝑛−1∏
𝑗=𝑖+1

(
1 −

2𝜆 𝑗

𝑗 + 1

) ª®¬.
The proof is completed by taking lim𝑛→∞ of above expression. □

Theorem A.6 (Sample mean consistency).

∑
𝜆2

𝑖
diverging is a

necessary condition for the consistency of 𝑝𝑛 (Equation 4):

∀𝜖 > 0 : lim

𝑛→∞
Pr( |𝑝𝑛 − 𝑝 | > 𝜖) = 0 −→ lim

𝑛→∞

𝑛∑︁
𝑖=1

𝜆2

𝑖 = ∞. (22)

Proof. By Loève [31, p. 159], consistency of 𝑝 implies its vari-

ance vanishing: ∀𝜖 > 0 : Pr( |𝑝𝑛−𝑝 | ≥ 𝜖) ≥ V [𝑝𝑛]−𝜖2
. Then: ∀𝜖 >

0 : lim𝑛→∞ Pr ( |𝑝𝑛 − 𝑝 | > 𝜖) = 0 → lim𝑛→∞ Var(𝑝𝑛) = 0 → ∀𝑖 :

lim𝑛→∞
∏𝑛−1

𝑗=𝑖+1 (1 −
2𝜆 𝑗
𝑗+1 ) = 0 → ∀𝑖 : lim𝑛→∞

∑𝑛−1

𝑗=𝑖+1
𝜆 𝑗
𝑗+1 = ∞ →

∀𝑖 : lim𝑛→∞
√︃∑𝑛−1

𝑗=𝑖+1 𝜆
2

𝑗

√︃∑𝑛−1

𝑗=𝑖+1
1

( 𝑗+1)2 = ∞→ lim𝑛→∞
∑𝑛
𝑖=1

𝜆2

𝑖
=

∞. The second step is due to partial products in Theorem A.5, the

third by Leonard [28, p. 6], the fourth by Cauchy-Schwarz inequality

and the fifth by convergence of p-series with 𝑝 = 2. □

Proposition A.7 (Conditional bias of sample mean).

E[𝑝𝑛 − 𝑝 | 𝑝𝑚] = (𝑝𝑚 − 𝑝)
∏𝑛
𝑖=𝑚+1

(
1 − 𝜆𝑖

𝑖

)
where𝑚 < 𝑛.

Proof. By repeatedly applying the induction step in TheoremA.1,

replacing E[𝑝𝑛] with E[𝑝𝑛 | 𝑝𝑚] and noting that E[𝑝𝑚 |𝑝𝑚] = 𝑝𝑚 :

E[𝑝𝑛 − 𝑝 | 𝑝𝑚] = E[𝑝𝑛−1 − 𝑝 | 𝑝𝑚]
(
1−𝜆𝑛

𝑛

)
=

(
𝑝𝑚−𝑝

) 𝑛∏
𝑖=𝑚+1

(
1−𝜆𝑖

𝑖

)
.

□

Proposition A.8 (Error bound of 𝑝𝑛). If 𝜆𝑖 = 𝑐𝑖−1 s.t. 𝑐 ∈
(0, 1), the asymptotic expected absolute error of the sample mean
is at least 2𝑝 (1 − 𝑝) exp

(
−𝑐𝜙 (𝑐, 1, 2) − 𝑐2𝜙

(
𝑐2, 2, 2

) )
, where 𝜙 (𝑧, 𝑠,

𝑎) ≡ ∑∞
𝑘=0

𝑧𝑘

(𝑎+𝑘 )𝑠 is Lerch transcendent and converges to a fixed
value ∀𝑧 < 1 [11].

Proof.

lim

𝑛→∞
E[|𝑝𝑛 − 𝑝 |] ≥ lim

𝑛→∞
E[|E[𝑝𝑛 − 𝑝 |𝑟1] |] = 2𝑝 (1 − 𝑝)

· exp

( ∞∑︁
𝑖=2

ln

(
1 − 𝜆𝑖

𝑖

))
≥ 2𝑝 (1 − 𝑝) exp

( ∞∑︁
𝑖=2

(
− 𝜆𝑖
𝑖
−
𝜆2

𝑖

𝑖2

))
= 2𝑝 (1 − 𝑝) exp

(
− 𝑐

∞∑︁
𝑖=0

𝑐𝑖

(2 + 𝑖) − 𝑐
2

∞∑︁
𝑖=0

𝑐2𝑖

(2 + 𝑖)2

)
.

The first step is due to the law of total expectation and Jensen’s

inequality for conditional expectation. The second is by Propo-

sition A.7 with 𝑚 = 1. The third is due to a known inequality

∀𝑥 > −0.68 : ln(1 + 𝑥) ≥ 𝑥 − 𝑥2
[26]. □

Theorem A.9. Each 𝑟𝑖 (and thus also 𝑝𝑛) is unbiased for all ˆ𝜆𝑖 .

Proof. By Theorem A.1, for any choice of 𝑖 and ˆ𝜆𝑖 :

E
[
𝑟𝑖 | ˆ𝜆𝑖

]
= E

[
𝑟𝑖 − (1 − ˆ𝜆𝑖 )𝑝𝑖−1

ˆ𝜆𝑖

]
=
E[𝑟𝑖 − 𝑝𝑖−1]

ˆ𝜆𝑖
+ E[𝑝𝑖−1] = 𝑝.

□

Theorem A.10 (Conditional bias of 𝑟𝑖 | ˆ𝜆𝑖 = 𝜆𝑖 ). If ˆ𝜆𝑖 = 𝜆𝑖 ,
the affine mean estimator 𝑟𝑖 is an unbiased estimator of 𝑝 when
conditioned on 𝑟 𝑗 or 𝑝 𝑗 s.t. ∀𝑗 < 𝑖 .

Proof. For any function of previous ratings 𝑓𝑖 = 𝑓 (𝑟1, . . . , 𝑟𝑖−1):

E
[
𝑟𝑖 | 𝑓𝑖 , ˆ𝜆𝑖

]
= E

[
𝜆𝑖𝑝 + (1 − 𝜆𝑖 )𝑝𝑖−1 − (1 − ˆ𝜆𝑖 )𝑝𝑖−1

ˆ𝜆𝑖
| 𝑓𝑖

]
=
𝜆𝑖

ˆ𝜆𝑖
𝑝 +

(
ˆ𝜆𝑖 − 𝜆𝑖

ˆ𝜆𝑖

)
E[𝑝𝑖−1 | 𝑓𝑖 ] = 𝑝. (23)

The proof is completed by setting 𝑓𝑖 = 𝑟 𝑗 or 𝑓𝑖 = 𝑝 𝑗 . □

Corollary A.11 (Conditional bias of 𝑟𝑖 | ˆ𝜆𝑖 ≠ 𝜆𝑖 ). Affine
estimator 𝑟𝑖 is not unbiased when conditioned on a function of previous
interactions as the last equality of Equation 23 may not hold.

Lemma A.12 (Covariance of affine estimators). 𝑟𝑖 and 𝑟 𝑗<𝑖
are uncorrelated as long as ˆ𝜆𝑖 = 𝜆𝑖 .

Proof. By Theorem A.10 and the law of total expectation:

E
[
𝑟𝑖𝑟 𝑗

]
= E

[
E
[
𝑟𝑖𝑟 𝑗 | 𝑟 𝑗

] ]
= E

[
𝑟 𝑗E

[
𝑟𝑖 | 𝑟 𝑗

] ]
= E

[
𝑟 𝑗E[𝑟𝑖 ]

]
= E

[
𝑟 𝑗

]
E[𝑟𝑖 ] . □

Theorem A.13. The variance of affine estimator in Equation 15 is:

V[𝑝𝑛] =
1(∑𝑛

𝑖=1
𝜔𝑖

)
2

𝑛∑︁
𝑖=1

𝜔2

𝑖

𝜆2

𝑖

(
𝑝 (1 − 𝑝) − (1 − 𝜆𝑖 )2V[𝑝𝑖−1]

)
.
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Proof. By Lemmas A.12, A.3 and A.2:

V[𝑝𝑛] =
1(∑𝑛

𝑖=1
𝜔𝑖

)
2

©«
𝑛∑︁
𝑖=1

𝜔2

𝑖 V[𝑟𝑖 ] + 2

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝜔𝑖𝜔 𝑗Cov
[
𝑟𝑖 , 𝑟 𝑗

]ª®¬
=

1(∑𝑛
𝑖=1

𝜔𝑖
)
2

𝑛∑︁
𝑖=1

𝜔2

𝑖

𝜆2

𝑖

(
V[𝑟𝑖 ] + (1 − 𝜆𝑖 )2V[𝑝𝑖−1] − 2(1 − 𝜆𝑖 )

· Cov[𝑟𝑖 , 𝑝𝑖−1]
)
=

(
𝑛∑︁
𝑖=1

𝜔𝑖

)−2 𝑛∑︁
𝑖=1

𝜔2

𝑖

𝜆2

𝑖

(
𝑝 − 𝑝2 − (1 − 𝜆𝑖 )2V[𝑝𝑖−1]

)
. □

Theorem A.14 (Convergence of affine estimator). When
∀ ˆ𝜆𝑖 = 𝜆𝑖 , 𝑝𝑛 =

∑𝑛
𝑖=1
𝜔𝑖𝑟𝑖∑𝑛

𝑖=1
𝜔𝑖

converges within 𝜖 of the true value 𝑝 with

probability of at least 1 − 𝛼 if
(∑𝑛
𝑖=1

𝜔𝑖
)
2 ≥ 1

2𝜖2
log

2

𝛼

∑𝑛
𝑖=1

(𝜔𝑖

𝜆𝑖

)
2.

Proof. Define 𝑋𝑛 as

∑𝑛
𝑖=1

𝜔𝑖 (𝑟𝑖 − 𝑝), 𝑋0 = 0. Then 𝑋𝑛 is a mar-

tingale as E[𝑋𝑛 | 𝑋0, 𝑋1, ..., 𝑋𝑛−1] = 𝑋𝑛−1+E[𝑤𝑖 (𝑟𝑖 − 𝑝) | 𝑝𝑛−1] =
𝑋𝑛−1. For each𝑛 : 𝑋𝑛−𝑋𝑛−1 = 𝜔𝑛 (𝑟𝑛 − 𝑝), whose values for 𝑟𝑛 = 0

and 𝑟𝑛 = 1 are separated by 𝑑𝑛 =
𝜔𝑛

𝜆𝑛
. By Azuma’s inequality:

Pr

(����∑𝑛𝑖=1
𝜔𝑖 (𝑟𝑖 − 𝑝)∑𝑛
𝑖=1

𝜔𝑖

���� > 𝜖) = Pr

(
|𝑋𝑛 − 𝑋0 | > 𝜖

𝑛∑︁
𝑖=1

𝜔𝑖

)
≤ 2 exp

(
−2𝜖2

(∑𝑛
𝑖=1

𝜔𝑖
)
2∑𝑛

𝑖=1
𝑑2

𝑖

)
.

(24)

The proof is completed by taking the logarithm of both sides and

redistributing the terms. □

Corollary A.15 (Convergence of 𝑝𝑛 for specific 𝜔𝑖 ). By
Theorem A.14, when ∀𝑖 :

ˆ𝜆𝑖 = 𝜆𝑖 , 𝜔𝑖 = 1, 𝑝𝑛 is a consistent estimator
of 𝑝 if

∑𝑛
𝑖=1

1

𝜆2

𝑖

grows slower than 𝑛2. Similarly, when ∀ ˆ𝜆𝑖 = 𝜆𝑖 = 𝜔𝑖 ,

𝑝𝑛 is a consistent estimator of 𝑝 if
(∑𝑛
𝑖=1

𝜆𝑖
)
2 grows quicker than 𝑛.
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