
Computationally Efficient Optimization of Plackett-Luce Ranking Models
for Relevance and Fairness (Extended Abstract)

Harrie Oosterhuis
Radboud University

harrie.oosterhuis@ru.nl

Abstract
Computing the gradient of stochastic Plackett-Luce
(PL) ranking models for relevance and fairness
metrics can be infeasible because it requires iter-
ating over all possible permutations of items.
In this paper, we introduce a novel algorithm: PL-
Rank, that estimates the gradient of a PL rank-
ing model through sampling. Unlike existing ap-
proaches, PL-Rank makes use of the specific struc-
ture of PL models and ranking metrics. Our
experimental analysis shows that PL-Rank has a
greater sample-efficiency and is computationally
less costly than existing policy gradients, resulting
in faster convergence at higher performance.

1 Introduction
Learning to Rank (LTR) is a branch of machine learning that
covers methods for optimizing ranking systems for search
and recommendation applications [Liu, 2009]. Tradition-
ally, scoring function are used to assigns an individual score
to each item, and subsequently, produce rankings by sort-
ing items according to their assigned scores [Fuhr, 1989;
Joachims, 2002]. The main difficulty in LTR is that there is
no gradient w.r.t. the sorting procedure. Solutions to this diffi-
culty can be divided into two categories: optimizing a heuris-
tic function that bounds or approximates the ranking perfor-
mance [Burges, 2010; Wang et al., 2018; Bruch et al., 2019];
or optimizing a probabilistic ranking system [Cao et al., 2007;
Xia et al., 2008; Ustimenko and Prokhorenkova, 2020].

In recent years, the popularity of the Plackett-Luce (PL)
ranking model has increased [Singh and Joachims, 2019;
Diaz et al., 2020]. It models ranking as a succession of
decision problems where each individual decision is made
by a PL model [Plackett, 1975; Luce, 2012]. Previous re-
search from the industry indicates that the probabilistic nature
of the PL model leads to more robust performance [Bruch
et al., 2020]. In online LTR, it appears the PL model is
very good at exploration because it explicitly quantifies its
uncertainty [Oosterhuis and de Rijke, 2018]. Recent work
has also posed that the PL model is well suited to ad-
dress fairness aspects of ranking [Singh and Joachims, 2019;
Diaz et al., 2020].

However, computing the gradient of a PL ranking model
requires an iteration over every possible permutation of items.
In practice, this computational infeasibility can be circum-
vented by estimating the gradient based on rankings sampled
from the model [Oosterhuis and de Rijke, 2020]. Unfortu-
nately, this approach can be very computationally costly.

In this paper, we introduce PL-Rank: a novel method that
can efficiently optimize both relevance and exposure-based
fairness ranking metrics. Our work contributes novel esti-
mators that unbiasedly estimate the gradient of a PL ranking
model w.r.t. a ranking metric, and the PL-Rank algorithm to
compute them efficiently. To the best of our knowledge, PL-
Rank is the first LTR method that utilizes specific properties
of ranking metrics and the PL-ranking model. Our experi-
mental results show that compared to existing LTR methods,
PL-Rank has increased sample-efficiency and increased time-
efficiency: PL-Rank requires less computational time to con-
verge at optimal performance. The introduction of PL-Rank
makes the optimization of PL ranking models more practi-
cal by greatly reducing its computational costs, additionally,
these gains also help in the further promotion of fairness as-
pects of ranking models [Diaz et al., 2020].

2 Background
Let ρq,d = ρd denote the relevance of item d for a query q (for
brevity we omit q in notation), let y be a ranking and yk de-
note the kth item in ranking y: y = [y1, y2, . . . , yK]. Further-
more, π(y | q) = π(y) indicates the probability that ranking
y is sampled for query q by ranking model π. The perfor-
mance of π for a single query is determined by the weights
per rank θ and an expectation over the ranking behavior of π:

R(q) =
∑
y∈π

π(y)

K∑
k=1

θkρyk
= Ey

[
K∑

k=1

θkρyk

]
. (1)

By choosing θk accordingly, R(q) can represent the most
common relevance ranking metrics: e.g. top-K Discounted
Cumulative Gain (DCG): θDCG@K

k = 1[k ≤ K]/ log2(k+1),
or precision at K: θPREC@K

k = 1
K1[k ≤ K]. The overall per-

formance of a π is the expected performance over the natural
distribution of user-issued queries:

R = Eq[R(q)] =
∑
q∈Q

P (q)R(q). (2)

Accordingly, LTR for relevance optimizes π to maximize R,
given relevances ρd and the chosen metric represented by θk.

In the PL ranking model [Bruch et al., 2020], an item is
chosen from a pool of available items based on the individual
scores each item has. For our ranking problem, a learned
prediction model m predicts the log score of an item d w.r.t.
to query q as m(q, d) = m(d) ∈ R. The probability that an
unplaced item d is chosen to be the kth item in ranking y from
the set of items D is the score of d: em(d), divided by the sum
of scores for the items that have not been placed yet:

π(d | y1:k−1,D) =
em(d)1[d ̸∈ y1:k−1]∑

d′∈D\y1:k−1
em(d′)

, (3)

where y1:k−1 indicates the ranking up to rank k − 1, i.e.,
y1:k−1 = [y1, y2, . . . , yk−1]. We note the large similarity
with the Soft-Max function commonly used in deep learning.
Accordingly, the probability of a ranking is simply the prod-
uct of the placement probabilities of each individual item:

π(y) =

K∏
k=1

π(yk | y1:k−1,D). (4)

An advantage of the PL ranking model is that rankings can
be sampled quite efficiently, by applying the Gumbel Soft-
max trick [Gumbel, 1954]: for each item a sample from
the Gumbel distribution is taken: γ

(i)
d ∼ Gumbel(0, 1), i.e.

by first sampling uniformly from the [0, 1] range: ζ
(i)
d ∼

Uniform(0, 1), and then applying: γ(i)
d = − log(− log(ζ

(i)
d)).

Subsequently, per item we take the sum of their Gumbel sam-
ple and their log score: m̂(i)

d = m(d) + γ
(i)
d . Finally, sorting

according to the m̂(i) values provides a sampled ranking:

y(i) = [y
(i)
1 , y

(i)
2 , . . . , y

(i)
K]

s.t. ∀(y(i)x , y(i)z), x < z → m̂(i)
yx

≥ m̂(i)
yz
.

(5)

This sampling procedure follows the PL distribution of
π [Gumbel, 1954; Bruch et al., 2020]. In practice, rankings
can thus be sampled as quickly as top-K sorting, which trans-
lates to a computational complexity of O(|D|+K log(|D|)).

Previous work have used policy-gradients to optimize PL
ranking models [Singh and Joachims, 2019; Bruch et al.,
2020], they utilize the famous log-trick from the REIN-
FORCE algorithm [Williams, 1992]:

δ

δm
π(y) = π(y)

[
δ

δm
log(π(y))

]
. (6)

By applying the log-trick to Eq. 1, its derivate can be ex-
pressed as an expectation over the ranking distribution π:

δ

δm
R(q) =

∑
y∈π

[
δ

δm
π(y)

] K∑
k=1

θkρyk

= Ey

[[
δ

δm
log(π(y))

]
︸ ︷︷ ︸

gradient w.r.t. complete ranking

(
K∑

k=1

θkρyk

)
︸ ︷︷ ︸

full reward

]
.

(7)

We see that this policy gradient is composed of two parts: a
gradient w.r.t. the log probability of a complete ranking mul-
tiplied by the reward for that ranking. Luckily, to avoid iterat-
ing over all possible rankings the gradient can approximated
by a simple sampling strategy; If we sample N rankings from
π with y(i) denoting the ith sample, then the following esti-
mates the gradient unbiasedly:

δ

δm
R(q) ≈ 1

N

N∑
i=1

[
δ

δm
log(π(y(i)))

](K∑
k=1

θkρy(i)
k

)
. (8)

A straightforward implementation could use a machine learn-
ing framework to compute the gradient w.r.t. the log proba-
bilities:

[
δ

δm log(π(y(i)))
]
, e.g. PyTorch [Paszke and others,

2019] or Tensorflow [Abadi and others, 2016]. The downside
of this approach is that it delegates the most difficult compu-
tation to a framework, which generally do not make use of
the fact that π is a PL model and that a ranking metric is opti-
mized. In contrast, the remainder of this paper will introduce
methods that make use of specific PL properties, and as a re-
sult, show better computational efficiency in our experimental
results.

3 Method: PL-Rank for Relevance
In this section, we will derive three novel methods for esti-
mating the gradient of a PL-ranking model.

3.1 Ranking Metric Based Approximation
By rewriting Eq. 1 we can see that ρd only need to be multi-
plied with the probability of the ranking up to their rank:

R(q) =
∑
y∈π

π(y)

K∑
k=1

θkρyk
=

K∑
k=1

θk
∑

y1:k∈π

π(y1:k)ρyk
, (9)

where
∑

y1:k∈π is a summation over all possible
(sub)rankings of length k. Intuitively this makes sense
because the placement of any item after k will not affect the
relevance of previously placed items.

Let us first consider that the derivate of the log probability
of a ranking can be decomposed as a sum over log probabili-
ties of the individual item placements, using Eq. 4:[

δ

δm
π(y1:k)

]
=π(y1:k)

k∑
x=1

[
δ

δm
log(π(yx|y1:x−1))

]
. (10)

Eq. 9 & 10 allow us to get the following derivative of R(q):

δ

δm
R(q) =

K∑
k=1

θk
∑

y1:k∈π

ρyk

[
δ

δm
π(y1:k)

]
(11)

= Ey

[
K∑

k=1

[
δ

δm
log(π(yk | y1:k−1))

]
︸ ︷︷ ︸

gradient w.r.t. item placement

(
K∑

x=k

θxρyx

)
︸ ︷︷ ︸

following reward

]
.

Again, this gradient can be estimated using sampled rankings:

δ

δm
R(q) ≈ 1

N

N∑
i=1

K∑
k=1

[
δ

δm
log(π(y

(i)
k |y(i)1:k−1))

] K∑
x=k

θxρy(i)
x
.

(12)

We will call this estimator the placement policy gradient es-
timator, in contrast with the basic policy gradient estimator
(Eq. 8), this estimator weights the gradients of placement
probabilities with the observed following relevances. By do-
ing so, it uses of the structure of ranking metrics and thus is
more tailored towards these metrics than the basic estimator.

3.2 Computationally Efficient Estimation
Next, we will use the knowledge that π is a PL model to pro-
pose an estimator that can be computed with greater compu-
tational efficiency. We start by taking the derivative of an item
placement probability:

δ

δm
π(d | y1:k−1) = π(d | y1:k−1)

([δ

δm
m(d)

]
−
∑
d′∈D

π(d′ | y1:k−1)
[δ

δm
m(d′)

])
.

(13)

We note that the probability of placing an item that has al-
ready been placed is zero: d ∈ y1:k−1 → π(d | y1:k−1) = 0.
Combining Eq. 11 & 13 results in the following gradient:

δ

δm
R(q) = Ey

[K∑
k=1

[δ

δm
log(π(yk | y1:k−1))

] K∑
x=k

θxρyx

]

=
∑
d∈D

[
δ

δm
m(d)

]
Ey

[reward following placement︷ ︸︸ ︷(
K∑

k=rank(d,y)

θkρyk

)
(14)

−
rank(d,y)∑

k=1

π(d | y1:k−1)

(
K∑

x=k

θxρyx

)
︸ ︷︷ ︸

risk imposed by placement probability

]
.

We see that the derivative can seen as a summation over
items with two parts per item: the first part represents the
expected reward to follow the placement of d; the second part
can be interpreted as a the risk imposed by an item d. We
view it as representing a risk since if d is not placed at k
then π(d | y1:k−1) indicates how likely d would have been
placed instead of yk and in which case the following reward∑K

x=k θxρyx may not have occurred. For cases where d is the
item at rank k: d = yk, the risk stops the log score m(d) from
increasing too far as the placement probability π(d | y1:k−1)
may already be very great.

Based on Eq. 14, we introduce the PL-Rank-1 estimator:

δ

δm
R(q) ≈ 1

N

∑
d∈D

[
δ

δm
m(d)

] N∑
i=1

(
K∑

k=rank(d,y(i))

θkρy(i)
k

)

−
rank(d,y(i))∑

k=1

π(d | y(i)1:k−1)

(
K∑

x=k

θxρy(i)
x

)
. (15)

To the best of our knowledge, PL-Rank-1 is the first gradient
estimation method that is specifically designed for optimizing
PL-ranking models w.r.t. ranking metrics. Importantly, it can
be computed with a time-complexity of O(N ·K ·D).

3.3 Improving Sample-Efficiency
In Eq. 14 we see that an item receives a positive weight from
the expected following reward. Therefore, even when an item
has a low probability of being placed it can compensate with
a high relevance (ρd) to get a positive weight. However, the
N samples may not include a ranking where such an item is
placed at all and thus these items will nevertheless receive a
negative weight in the estimated gradient. We propose one
last estimator to mitigate this potential issue.

First, we rewrite the expected reward following placement
to separate the reward obtained from d:

Ey

[
K∑

k=rank(d,y)

θkρyk

]
(16)

= Ey

[(
K∑

k=rank(d,y)+1

θkρyk

)
+

rank(d,y)∑
k=1

π(d | y1:k−1)θkρd

]
.

Combining this result with Eq. 14 we get:

δ

δm
R(q) =

∑
d∈D

[
δ

δm
m(d)

]
Ey

[future reward after placement︷ ︸︸ ︷(
K∑

k=rank(d,y)+1

θkρyk

)
(17)

+

rank(d,y)∑
k=1

π(d | y1:k−1)

(
θkρd −

K∑
x=k

θxρyx

)
︸ ︷︷ ︸

expected direct reward minus the risk of placement

]
.

In this formulation the gradient w.r.t. an item’s log score m(d)
is weighted by the relevance after placement (excluding ρd)
plus the expected direct reward (θkρd) minus the expected
risk imposed by d before its placement. From Eq. 17 we can
derive the novel PL-Rank-2 estimator:

δ

δm
R(q) ≈ 1

N

∑
d∈D

[
δ

δm
m(d)

] N∑
i=1

(
K∑

k=rank(d,y(i))+1

θkρy(i)
k

)

+

rank(d,y(i))∑
k=1

π(d | y(i)1:k−1)

(
θkρd −

K∑
x=k

θxρy(i)
x

)
. (18)

We will call this estimator: PL-Rank-2. Unlike PL-Rank-1
(Eq. 15), PL-Rank-2 can provide a positive weight to items
that were not in the top-K of any of the N sampled rankings.
While this is expected to increase the sample-efficiency, it
does not come at the cost of computational complexity as both
PL-Rank-1 and PL-Rank-2 have a complexity of O(N ·K·D).

3.4 PL-Rank for Fairness
Importantly, PL-Rank can also estimate the gradient of a PL
ranking model w.r.t. exposure-based fairness metrics [Diaz
et al., 2020; Biega et al., 2018] Exposure represents the ex-
pected number of people that will examine an item, let θk be
the probability that a user examines an item at rank k, then
the exposure an item d receives under π is:

E(q, d) = Ey

[
K∑

k=1

θk1[yk = d]

]
=
∑
y∈π

π(y)

K∑
k=1

θk1[yk = d],

(19)

Yahoo! Webscope MSLR-WEB30k Istella

0 20 40 60 80

10.6

10.8

11.0

11.2

11.4

0 20 40 60 80 100 120
7.4

7.6

7.8

8.0

8.2

8.4

0 50 100 150 200

17.5

18.0

18.5

19.0

Minutes Trained Minutes Trained Minutes Trained
LambdaLoss Policy Gradient Placement Policy Gradient PL-Rank-1 PL-Rank-2

Figure 1: DCG@5 reached with different gradient estimation methods over training time, results are the mean of 20 independent runs.

where again for brevity we denote Ed = E(q, d). Most fair-
ness metrics for rankings consider whether exposure is dis-
tributed fairly over items, regardless of the exact metric, PL-
Rank can be applied to a fairness metric F if the chain-rule
can be applied as follows:

δ

δm
F(q) =

∑
d∈D

δF(q)

δEd
δEd
δm

. (20)

To derive this gradient, we first note that the Ed (Eq. 19) and
R(q) (Eq. 1) are equivalent if ∀d′ ρd′ = 1[d′ = d], therefore
if we replace ρ in PL-Rank-2 (Eq. 17) accordingly, it will
provide us the gradient δEd

δm . If we combine this fact with
Eq. 20 we obtain the following PL-Rank-2 based gradient:

δ

δm
F(q) =

∑
d∈D

[
δ

δm
m(d)

]
Ey

[(
K∑

k=rank(d,y)+1

θk

[
δF(q)

δEyk

])

+

rank(d,y)∑
k=1

π(d | y1:k−1)

(
θk

[
δF(q)

δEd

]
−

K∑
x=k

θx

[
δF(q)

δEyx

])]
.

In other words, we can apply PL-Rank by simply replacing
the item relevances with the gradients: δF(q)

δEd
before compu-

tation. This potentially makes PL-Rank the first LTR method
that is suited for optimizing both relevance and fairness.

4 Experimental Setup
Our experiments evaluate whether PL-Rank can reach higher
performance in less computational time than policy gradi-
ents or LambdaLoss [Wang et al., 2018]. We use the three
largest publicly-available LTR industry datasets: Yahoo! Web-
scope [Chapelle and Chang, 2011], MSLR-WEB30k [Qin and
Liu, 2013], and Istella [Dato et al., 2016]. As a metric to opti-
mize, we chose the commonly-used top-5 Discounted Cumu-
lative Gain (DCG@5). To compare the computational costs
of each method, we ran repeated experiments under identi-
cal circumstances on a single Intel Xeon Silver 4214 CPU.
We optimize neural networks with two hidden layers of 32
sigmoid activated nodes using standard stochastic gradient
descent with a 0.01 learning rate. For calculating gradients
we utilize Tensorflow [Abadi and others, 2016] with two ex-
ceptions: the sampling of rankings and δR(q)

δm with the PL-
Rank algorithm are computed using Numpy [Harris and oth-
ers, 2020]. The number of sampled ranked are scaled with
epochs according to: N = 10 + 90 · epoch

40 . 1

1Code: https://github.com/HarrieO/2021-SIGIR-plackett-luce.

5 Results
Figure 1 shows the performance of PL ranking models trained
with PL-Rank, Policy Gradients and LambdaLoss over train-
ing time in minutes. We see that LambdaLoss, a method de-
signed for deterministic ranking models, converges quickly
but on suboptimal performance. The standard policy gradient
(Eq. 7) appears to learn slowly, as we do not observe it to con-
verge in our results. The placement policy gradient outper-
forms both baselines within 20 minutes of training across all
three datasets. On all datasets, we see an improvement of PL-
Rank-1 over the placement policy gradient which is very large
on Yahoo and MSLR but smaller on Istella. This improve-
ment can be attributed to the reduced computational costs
of PL-Rank-1, as a result, it is capable of completing more
epochs in the same amount of time and can therefore reach a
higher performance in less computational time. Finally, com-
pared to PL-Rank-1, PL-Rank-2 has an even higher perfor-
mance on the Yahoo and Istella datasets but not on MSLR. It
appears that its increased sample-efficiency helps PL-Rank-
2 initially, when N is low, except on the MSLR dataset. To
conclude, it thus appears that Pl-Rank-2 reaches higher per-
formance faster when compared to the other methods in all
tested cases, with the single exception of PL-Rank-1 on the
MSLR dataset. Therefore, our results support the conclusion
that PL-Rank-2 is the most time-efficient method when com-
pared with policy gradients and LambdaLoss.

6 Conclusion
This paper addressed the optimization of PL-ranking models
for both relevance and fairness ranking metrics. To alleviate
the large computational costs of existing methods, we intro-
duced three new estimators for efficiently estimating the gra-
dient of a ranking metric w.r.t. a PL ranking model: the place-
ment policy gradient and two PL-Rank methods. Our exper-
imental results indicate that our novel methods considerably
reduce the computational time required to reach optimal per-
formance compared to existing methods. Compared to the
popular basic policy gradient, PL-Rank-2 converges several
hours earlier, thus immensely alleviating the computational
costs of optimization.

With the introduction of PL-Rank, we hope that the usage
of stochastic ranking models is made more attractive in real-
world scenarios. Finally, we think PL-Rank is also an im-
portant theoretical contribution to the LTR field, as it proves
that PL ranking models can be optimized with computational
efficiency, without relying on heuristic methods.

https://github.com/HarrieO/2021-SIGIR-plackett-luce

References
[Abadi and others, 2016] Martı́n Abadi et al. Tensorflow: A

system for large-scale machine learning. In 12th USENIX
symposium on operating systems design and implementa-
tion OSDI’16), pages 265–283, 2016.

[Biega et al., 2018] Asia J Biega, Krishna P Gummadi, and
Gerhard Weikum. Equity of attention: Amortizing individ-
ual fairness in rankings. In The 41st International ACM
SIGIR Conference on Research & Development in Infor-
mation Retrieval, pages 405–414, 2018.

[Bruch et al., 2019] Sebastian Bruch, Masrour Zoghi,
Michael Bendersky, and Marc Najork. Revisiting ap-
proximate metric optimization in the age of deep neural
networks. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1241–1244, 2019.

[Bruch et al., 2020] Sebastian Bruch, Shuguang Han,
Michael Bendersky, and Marc Najork. A stochastic treat-
ment of learning to rank scoring functions. In Proceedings
of the 13th International Conference on Web Search and
Data Mining, pages 61–69, 2020.

[Burges, 2010] Christopher J.C. Burges. From ranknet to
lambdarank to lambdamart: An overview. Technical Re-
port MSR-TR-2010-82, Microsoft, 2010.

[Cao et al., 2007] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-
Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning, pages 129–
136, 2007.

[Chapelle and Chang, 2011] Olivier Chapelle and Yi Chang.
Yahoo! Learning to Rank Challenge Overview. Journal of
Machine Learning Research, 14:1–24, 2011.

[Dato et al., 2016] Domenico Dato, Claudio Lucchese,
Franco Maria Nardini, Salvatore Orlando, Raffaele
Perego, Nicola Tonellotto, and Rossano Venturini.
Fast ranking with additive ensembles of oblivious and
non-oblivious regression trees. ACM Transactions on
Information Systems (TOIS), 35(2):Article 15, 2016.

[Diaz et al., 2020] Fernando Diaz, Bhaskar Mitra,
Michael D. Ekstrand, Asia J. Biega, and Ben Carterette.
Evaluating Stochastic Rankings with Expected Exposure,
page 275–284. Association for Computing Machinery,
New York, NY, USA, 2020.

[Fuhr, 1989] Norbert Fuhr. Optimum polynomial retrieval
functions based on the probability ranking principle. ACM
Transactions on Information Systems (TOIS), 7(3):183–
204, 1989.

[Gumbel, 1954] Emil Julius Gumbel. Statistical theory of
extreme values and some practical applications: a series
of lectures, volume 33. US Government Printing Office,
1954.

[Harris and others, 2020] Charles R. Harris et al. Array pro-
gramming with NumPy. Nature, 585(7825):357–362,
2020.

[Joachims, 2002] Thorsten Joachims. Optimizing search en-
gines using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 133–142. ACM, 2002.

[Liu, 2009] Tie-Yan Liu. Learning to rank for information
retrieval. Foundations and Trends in Information Re-
trieval, 3(3):225–331, 2009.

[Luce, 2012] R Duncan Luce. Individual choice behavior: A
theoretical analysis. Courier Corporation, 2012.

[Oosterhuis and de Rijke, 2018] Harrie Oosterhuis and
Maarten de Rijke. Differentiable unbiased online learning
to rank. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management,
pages 1293–1302. ACM, 2018.

[Oosterhuis and de Rijke, 2020] Harrie Oosterhuis and
Maarten de Rijke. Taking the counterfactual online:
Efficient and unbiased online evaluation for ranking. In
Proceedings of the 2020 International Conference on The
Theory of Information Retrieval. ACM, 2020.

[Paszke and others, 2019] Adam Paszke et al. Pytorch: An
imperative style, high-performance deep learning library.
In Advances in neural information processing systems,
pages 8026–8037, 2019.

[Plackett, 1975] Robin L Plackett. The analysis of permuta-
tions. Journal of the Royal Statistical Society: Series C
(Applied Statistics), 24(2):193–202, 1975.

[Qin and Liu, 2013] Tao Qin and Tie-Yan Liu. Introducing
letor 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013.

[Singh and Joachims, 2019] Ashudeep Singh and Thorsten
Joachims. Policy learning for fairness in ranking. In Ad-
vances in Neural Information Processing Systems, pages
5426–5436, 2019.

[Ustimenko and Prokhorenkova, 2020] Aleksei Ustimenko
and Liudmila Prokhorenkova. Stochasticrank: Global
optimization of scale-free discrete functions. In In-
ternational Conference on Machine Learning, pages
9669–9679. PMLR, 2020.

[Wang et al., 2018] Xuanhui Wang, Cheng Li, Nadav Gol-
bandi, Michael Bendersky, and Marc Najork. The lambda-
loss framework for ranking metric optimization. In Pro-
ceedings of the 27th ACM International Conference on
Information and Knowledge Management, pages 1313–
1322. ACM, 2018.

[Williams, 1992] Ronald J Williams. Simple statistical
gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[Xia et al., 2008] Fen Xia, Tie-Yan Liu, Jue Wang, Wen-
sheng Zhang, and Hang Li. Listwise approach to learn-
ing to rank: theory and algorithm. In Proceedings of the
25th international conference on Machine learning, pages
1192–1199, 2008.

	Introduction
	Background
	Method: PL-Rank for Relevance
	Ranking Metric Based Approximation
	Computationally Efficient Estimation
	Improving Sample-Efficiency
	PL-Rank for Fairness

	Experimental Setup
	Results
	Conclusion

