
State Encoders in Reinforcement Learning for Recommendation:
A Reproducibility Study

Jin Huang
University of Amsterdam

Amsterdam, The Netherlands
j.huang2@uva.nl

Harrie Oosterhuis
Radboud University

Nijmegen, The Netherlands
harrie.oosterhuis@ru.nl

Bunyamin Cetinkaya
University of Amsterdam

Amsterdam, The Netherlands
bun.cet20@gmail.com

Thijs Rood
University of Amsterdam

Amsterdam, The Netherlands
thijs.rood@hotmail.com

Maarten de Rijke
University of Amsterdam

Amsterdam, The Netherlands
m.derijke@uva.nl

ABSTRACT
Methods for reinforcement learning for recommendation (RL4Rec)
are increasingly receiving attention as they can quickly adapt to
user feedback. A typical RL4Rec framework consists of (1) a state
encoder to encode the state that stores the users’ historical interac-
tions, and (2) an RL method to take actions and observe rewards.
Prior work compared four state encoders in an environment where
user feedback is simulated based on real-world logged user data. An
attention-based state encoder was found to be the optimal choice as
it reached the highest performance. However, this finding is limited
to the actor-critic method, four state encoders, and evaluation-
simulators that do not debias logged user data. In response to these
shortcomings, we reproduce and expand on the existing compari-
son of attention-based state encoders (1) in the publicly available
debiased RL4Rec SOFA simulator with (2) a different RL method, (3)
more state encoders, and (4) a different dataset. Importantly, our ex-
perimental results indicate that existing findings do not generalize
to the debiased SOFA simulator generated from a different dataset
and a Deep Q-Network (DQN)-based method when compared with
more state encoders.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies→Modeling and simulation.

KEYWORDS
Reinforcement Learning; Recommendation; State Encoders

ACM Reference Format:
JinHuang, Harrie Oosterhuis, BunyaminCetinkaya, Thijs Rood, andMaarten
de Rijke. 2022. State Encoders in Reinforcement Learning for Recommen-
dation: A Reproducibility Study. In Proceedings of the 45th Int’l ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR
’22), July 11–15, 2022, Madrid, Spain. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3477495.3531716

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGIR ’22, July 11–15, 2022, Madrid, Spain.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8732-3/22/07.
https://doi.org/10.1145/3477495.3531716

1 INTRODUCTION
With the development of interactive recommender systems (RSs),
reinforcement learning for recommendation (RL4Rec) is receiving
increased attention as reinforcement learning (RL) methods can
quickly adapt to user feedback [2, 32]. RL4Rec has been applied in
a variety of domains, such as movie [60, 62], news [68], and music
recommendations [41]. A typical process flow of RL4Rec starts with
an action of the system, which is an item being recommended to
the user. Subsequently, user interactions with the item are returned
as feedback (e.g., dwell time, a rating, or a click) to the system,
which then interprets the feedback as a reward signal. Finally, with
this new interaction, the system updates a state representation that
keeps track of the user’s historical interactions with the recom-
mended items. The cycle then repeats as the system again tries to
recommend the best item to the user based on its updated state
representation. The goal of RL4Rec is to optimize the system so as
to achieve the maximum cumulative reward.

An RL4Rec framework typically consists of two parts: (1) the
state encoder that encodes the state – a user’s historical interactions
– into a dense representation that is used to estimate the user’s pref-
erence and the value of state-action pairs; and (2) an RL method (e.g.,
the Deep Q-Network (DQN) [39] or the actor-critic [31] method)
that is applied to generate actions based on an estimated state-ac-
tion value function and observed reward. While RL4Rec methods
have achieved good performance, the effect of the state encoder
on RL4Rec methods has rarely been explicitly looked at. To bridge
this gap, Liu et al. [35] compared four state encoders in a simu-
lated RL4Rec environment and concluded that an attention-based
state encoder leads to the best recommendation performance. Their
findings revealed that the choice of state encoders is important for
effective RL4Rec and, accordingly, this shows that research into
state encoders could further improve the performance of RL4Rec
methods. However, the analysis of Liu et al. [35] is limited to the
actor-critic method and only four different state encoders. More-
over, their evaluation was based on simulated user feedback that
was directly inferred from logged user data, which is typically sub-
ject to heavy selection bias, e.g., popularity bias [51]. Consequently,
due to a lack of any bias correction, it is very likely that the results
and findings of Liu et al. [35] are also affected by the selection bias
present in the data.

In response to these shortcomings, we reproduce the work by
Liu et al. [35] and generalize its findings concerning state encoders

https://orcid.org/0000-0001-9273-9037
https://orcid.org/0000-0002-0458-9233
https://orcid.org/0000-0002-1086-0202
https://doi.org/10.1145/3477495.3531716
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3477495.3531716

in the following directions:

(1) Different simulated environments: The simulated user feedback
used in [35] is generated from logged user data which is in-
evitably subject to user selection bias, e.g., popularity bias [43].
Recently, Huang et al. [22] pointed out that simulators that
do not debias logged user data yield RL4Rec methods that are
heavily affected by selection bias. Hence, we use SOFA [22] –
the only publicly available debiased simulator [5] – to mitigate
the effect of selection bias on the resulting RL4Rec methods.

(2) Different RL method: DQN is the most popular RL method used
in RL4Rec [9, 10, 25, 33, 34, 36, 44, 53, 60, 65, 67, 68]; it is struc-
turally simpler than the actor-critic method by only optimizing
one objective. Thus, it matters to find out whether comparisons
of state encoders generalize to DQN-based RL4Rec methods.

(3) More state encoders: Several typical neural networks – multi-
layer perceptrons (MLPs), gated recurrent units (GRUs), and
convolutional neural networks (CNNs) – are not considered as
state encoders by Liu et al. [35]. We expand their comparison by
adding these three state encoders based on widely-used typical
neural networks.

(4) Different dataset: Besides the Yahoo! R3 dataset [38] used by Liu
et al. [35], we also use the Coat shopping dataset [47] to build
the debiased SOFA simulator.

We report on our efforts to reproduce the main finding in [35]:

The attention state encoder for RL4Rec provides signifi-
cantly higher performance than the bag of items (BOI),
pairwise local dependency between items (PLD) and
average (Avg) state encoders.

Moreover, we investigate whether this finding generalizes in the
four directions described above. Our experimental results show that
Liu et al.’s finding is reproducible when applying a DQN method
and evaluating in the debiased SOFA simulator on the Yahoo! R3
dataset. However, we also find that it does not generalize to debiased
simulations generated from the Coat shopping dataset [47].

Our study addresses the following research questions:

(RQ1) Does Liu et al.’s main finding generalize to the DQN-based
RL4Rec methods when evaluating in the debiased SOFA sim-
ulator and compared with more state encoders, i.e., with the
MLP, GRU and CNN state encoders?

(RQ2) Does Liu et al.’s main finding generalize to a debiased simu-
lation based on a different dataset?

(RQ3) Should the choice of activation function be taken into ac-
count when using theMLP-based state encoder for RL4Recs?

2 RELATEDWORK
RL4Rec methods. Deep RL methods (e.g., DQN, actor-critic and
REINFORCE) are able to handle high-dimensional spaces and are
therefore particularly suitable for RSs with large state spaces where
the user state involves combinatorial user interaction behavior [2].
DQN has been the most popular choice among the RL4Rec meth-
ods [9, 10, 25, 33, 34, 36, 44, 53, 60, 65, 67, 68]. Chen et al. [9] inte-
grate stratified sampling action replay and approximated regretted

rewards with Double DQN to stabilize the RL4Rec methods in dy-
namic environments. Zhao et al. [65] incorporate positive and nega-
tive feedback in a RL4Rec method. Chen et al. [10] propose a cascad-
ing DQN method to obtain a combinatorial recommendation policy
with large item space. Liu et al. [34] introduce a supervised signal
to enable stable training of RL4Rec methods. Others use DQN in
special recommendation scenarios, e.g., for news [68], movies [60],
education [36], projects [44], slates [25, 53], or mobile users [33]. RE-
INFORCE and actor-critic are other two important methods adapted
in RL4Rec. REINFORCE is a policy gradient method that directly
updates the policy weights [55]. Liang [30] adapts REINFORCE to
find a path between users and items in an external heterogenous
information network. REINFORCE with importance sampling can
be used to correct for biases caused by only observing feedback on
items recommended by other RSs [7, 37]. Additionally, REINFORCE
is commonly used in conversational RSs [15, 52] and explainable
RSs [57]. Actor-critic combines REINFORCE and the value-based
method [31], thus benefiting from both components; it is able to
handle large action spaces in RSs [13]. Actor-critic has been used
for diverse recommendation tasks [64, 66] and domains [59, 62].

In general, DQN is the most popular RL method used in RL4Recs
and has a simpler structure than actor-critic. Accordingly, we use
DQN and investigate whether the findings on actor-critic based
RL4Rec in [35] generalize to DQN based RL4Rec.
State encoders. Neural networks are widely used in collaborative
filtering (CF) based recommendation methods; popular choices
are multi-layer perceptrons (MLPs) [12, 19], convolutional neural
networks (CNNs) [18], recurrent neural networks (RNNs) [20, 56,
58] and attention [11, 23]. Based on logged user behavior, these
methods usually use a neural network to generate a dense vector
that captures user preference and can be further used to infer the
users’ preference over items. That makes it suitable to adapt these
recommendation methods in the state encoders. Most of the above
RL4Rec methods use neural networks, such as variants of RNNs [7,
65], to construct the state encoder and generate state representation,
which can subsequently be used by the previously discussed RL
methods. However, the effect of state encoders has rarely been
explored explicitly. To the best of our knowledge, Liu et al. [35] are
the first to compare the effects of different state encoders in RL4Rec
methods. We continue this research direction by reproducing and
generalizing Liu et al.’s comparison.
Debiasing recommendations. Bias is prevalent in interactions with
RSs, such as users choosing to rate certain items more often (self
selection bias) [43, 50] and RSs showing certain items to users
more often (algorithmic selection bias) [16]. As a result, user prefer-
ence prediction may be biased and over-specialization [1], con-
sequently, filter bubbles [40, 42] and unfairness [6] may occur.
To correct for bias, debiasing methods may be applied, such as
the error-imputation-based method [50], inverse propensity scor-
ing (IPS) [21], and the doubly robust method [28, 45]. IPS is the
most popular method and widely used in debiasing recommenda-
tions [7, 8, 27, 37, 47]. Corrections of the debiased methods may
lead to substantially improved prediction performance [47].
RL4Rec simulators. The usage of simulated RL4Rec environments
is widespread [5, 24, 29, 46, 48, 49, 61, 63, 68] and for a good rea-
son: RL4Rec methods learn by directly interacting with users but

the online nature of this learning process brings risks and limita-
tions: (1) in practice, the user experience can be negatively affected
during the early stages of the learning process; and (2) research
and experimentation with RL4Rec systems is often infeasible since
most researchers have no access to real interactions with live users.
RS simulators mitigate these issues as they allow RS developers
and researchers to optimize and evaluate their RL4Rec methods
on simulated user behavior [5, 24, 46, 48]. Some simulators gen-
erate user behavior based on fully synthetic data (e.g., generated
from a Bernoulli distribution [46]). These have been critiqued for
oversimplifying user behavior [5, 48]. Alternatively, to match real
user behavior more closely, other simulators generate user behavior
based on logged user data [24, 48, 63]. While these simulators are
widely accessible, most ignore the interaction biases present in the
logged user data from which they generate simulated user behavior.
Recently, Huang et al. [22] have pointed out that simulators that do
not debias logged user data result in RL4Rec models that are also
heavily affected by the selection biases. They argue that, as a result,
findings based on the outcomes of such biased simulators can be
misleading because the effect of the interaction biases extend to the
results underlying such findings. To mitigate the effect of bias, the
SOFA environment [22] applies inverse propensity scoring (IPS) to
reduce selection bias in logged user data when learning user pref-
erence and thus provides a debiased simulator. To the best of our
knowledge, SOFA is the only publicly available debiased simulator.
Therefore, we use SOFA to train and evaluate RL4Rec methods with
different state encoders.

3 PRELIMINARIES – RL4REC
RL4Rec methods commonly model the recommendation task as
a Markov decision process (MDP), where optimization is based
on interactions between the RS (i.e., the agent) and users (i.e., the
environment). The elements of an MDP for RL4Rec are:
State space S: A state 𝑠𝑢𝑡 stores the interaction history of user 𝑢

at 𝑡-th turn. For clarity and brevity, we omit the superscript 𝑢
when the user is clear from the context. The state 𝑠𝑡 consists
of the items recommended by the RS and the corresponding
user feedback (e.g., click or skip), denoted as 𝑠𝑡 = ([𝑖1, 𝑖2, . . . , 𝑖𝑡],
[𝑓1, 𝑓2, . . . , 𝑓𝑡]). In turn 𝑡 + 1, the RS takes an action based on
the information represented in state 𝑠𝑡 . The state 𝑠𝑢0 is always
initialized as empty, denoted as 𝑠𝑢0 = ([], []).

Action space A: The action 𝑎𝑡 is to recommend an item 𝑖𝑡 to user
𝑢 by the RS based on state 𝑠𝑡−1 in turn 𝑡 . Similar to the setup of
Liu et al. [35], in the SOFA simulator the RS only recommends
one item to the user at every turn.

Reward R: The immediate reward 𝑟 (𝑠𝑡−1, 𝑎𝑡) is generated accord-
ing to user’s feedback 𝑓𝑡 (e.g., skip or click) on 𝑎𝑡 .

Transition probability P: In turn 𝑡 + 1, SOFA receives an item
𝑖𝑡+1 being recommended from the RS and assumes that the state
𝑠𝑡 transitions deterministically to the next state 𝑠𝑡+1 by append-
ing item 𝑖𝑡+1 and the corresponding user feedback 𝑓𝑡+1, denoted
as 𝑠𝑡+1 = ([𝑖1, 𝑖2, . . . , 𝑖𝑡+1], [𝑓1, 𝑓2, . . . , 𝑓𝑡+1]).

Discount factor 𝛾 : 𝛾 ∈ [0, 1] determines the degree to which the
RS cares about future rewards: if 𝛾 = 0, the RS only takes the
immediate reward into account when taking an action; if 𝛾 = 1,
the sum of all future rewards is considered.

action

reward state

State encoder RL method
RL4Rec

Figure 1: The general framework of RL4Rec.

Generally, the RL4Rec method includes two components as shown
in Fig. 1: (1) the state encoder is applied to encode a state 𝑠 into
a dense representation that captures the user preference and is
subsequently used to approximate the state-action value function
𝑄 (𝑠, 𝑎 ; \); for every action 𝑎 ∈ A, 𝑄 (𝑠, 𝑎;\) represents the ex-
pected reward following the recommendation of item 𝑎 in state
𝑠; and (2) the RL method decides which action to take based on
the state representation, and chooses how the parameters of the
policy and state encoder models should be updated according to
the rewards received from the user.

While the RL method chooses items to recommend to the user,
it bases its decisions on the state representations provided by the
state encoder. Therefore, the performance of an RL4Rec system
heavily relies on the functioning of the state encoder. As a result,
understanding how the choice of state encoder should be made is
central to RL4Rec.

4 ORIGINAL STATE ENCODER COMPARISON
Liu et al. [35] follow the RL4Rec framework detailed in Section 3
and apply an actor-critic RL method to take actions and update the
model parameters. The applied actor-critic method comprises two
components: (1) the actor network follows the policy𝜋\𝐴 (𝑠𝑡−1) ∈ R𝑑
and takes the action 𝑎𝑡 , i.e., to recommend item 𝑖 with the maxi-
mum ranking score 𝒒⊤

𝑖
𝜋\𝐴 (𝑠𝑡−1), where 𝒒𝑖 denotes the embedding

of item 𝑖; (2) the critic network estimates state-action value func-
tion 𝑄 (𝑠, 𝑎;\𝐶) as the approximation of the true state-action value
function that represents the merits of the recommendation policy
generated by the actor network. The target network technique is
also adopted, where an identical actor network with policy 𝜋\𝐴′

and an identical critic network with state-action value function
𝑄 (𝑠, 𝑎; \𝐶′) are used. The recommendation agent makes use of
experience replay and employs a replay memory D to store the
agent’s experience, i.e., the user interactions with the recommended
items in the RL4Rec domain. Given transitions (𝑠𝑡−1, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡) ∈ D
generated based on the interactions between the user and recom-
mendation policy 𝜋\𝐴 , i.e., 𝑎𝑡 ∼ 𝜋\𝐴 (𝑠𝑡−1), the parameters \𝐴 of
the actor network and \𝐶 of the critic network are updated as:

\𝐴 ← \𝐴 + 𝛼𝐴𝑄 (𝑠𝑡−1, 𝑎𝑡 ;\𝐶)∇\𝐴 log𝜋\𝐴 (𝑠𝑡−1),

\𝐶 ← \𝐶 +
(
𝛼𝐶 (𝑟𝑡 + 𝛾𝑄 (𝑠𝑡 , 𝑎𝑡+1;\𝐶

′
)

−𝑄 (𝑠𝑡−1, 𝑎𝑡 ;\𝐶))∇\𝐶𝑄 (𝑠𝑡−1, 𝑎𝑡 ;\𝐶)
)
,

(1)

where 𝛼𝐴 and 𝛼𝐶 denote the learning rates for the actor network
and the critic network, respectively, and 𝑎𝑡+1 ∼ 𝜋\𝐴′ (𝑠𝑡). The target
network is updated following the soft replace technique: given a
soft-replace parameter 𝜏 , the parameters \𝐴

′
of the actor network

and \𝐶
′
of the critic network are updated as follows:

\𝐴
′
← 𝜏\𝐴 + (1 − 𝜏)\𝐴

′
, \𝐶

′
← 𝜏\𝐶 + (1 − 𝜏)\𝐶

′
. (2)

Liu et al. [35] consider two types of state encoder methods for rep-
resenting states and approximating the state-action value functions,
with and without user embedding 𝒑𝑢 . First, they introduce an item-
to-item collaborative filtering method, DRR-p, without taking user
embeddings into account, which uses an element-wise product to
capture the pairwise local dependency between items:

𝒔𝑡 = [𝒒𝑖1 , 𝒒𝑖2 , . . . , 𝒒𝑖𝑡 , {𝑤𝑖𝒒𝑖 ⊗𝑤 𝑗𝒒 𝑗 | 𝑖, 𝑗 ∈ {𝑖1, 𝑖2, . . . , 𝑖𝑡 }}], (3)

where ⊗ denotes the element-wise product; and the scalars 𝑤𝑖

and 𝑤 𝑗 indicate the importance weights of items 𝑖 and 𝑗 , respec-
tively. Additionally, three state encoders, DRR-u, DRR-ave and
DRR-att, with user embeddings are introduced and outperform
the state encoder DRR-p without user embeddings: (1) the ele-
ment-wise product on user-item embedding pairs is incorporated:
𝒔𝑡 = [{𝒑𝑢 ⊗ 𝑤𝑖𝒒𝑖 | 𝑖 ∈ {𝑖1, 𝑖2, . . . , 𝑖𝑡 }}]; and (2) to reduce compu-
tational costs, theweighted average pooling schema is used to aggre-
gate the item embeddings: 𝒔𝑡 = [𝒑𝑢 ,𝒑𝑢⊗{ave(𝑤𝑖𝒒𝑖) | 𝑖 ∈ {𝑖1, 𝑖2, . . . ,
𝑖𝑡 }}], where ave(·) denotes the average pooling operator. Finally,
(3) an attention network is applied:

𝒔𝑡 = [𝒑𝑢 ,𝒑𝑢 ⊗ {ave(𝑎𝑢,𝑖𝒒𝑖) | 𝑖 ∈ {𝑖1, 𝑖2, . . . , 𝑖𝑡 }}], (4)

𝑎𝑢,𝑖 =
exp(𝑎′

𝑢,𝑖
)∑

𝑖′∈{𝑖1,𝑖2,...,𝑖𝑡 } exp(𝑎′𝑢,𝑖′)
, (5)

𝑎′𝑢,𝑖 = ReLU(([𝒑𝑢 , 𝒒𝑖]𝑾2) + 𝑏2)𝑾1 + 𝑏1, (6)

where the weight matrices𝑾1,𝑾2 and the bias vectors𝑏1, 𝑏2 project
the input into a hidden layer; ReLU is the activation function for
the hidden layer.

Given the state representation 𝒔𝑡 , the ranking score of item 𝑖 , i.e.,
𝒑⊤
𝑖
𝜋\𝐴 (𝑠𝑡), can be used to execute policy 𝜋\𝐴 (𝑠𝑡) and approximate

state-action value function𝑄 (𝑠𝑡 , 𝑎;\𝐶). Consequently, the resulting
actor-critic based RL4Rec method can interact with the (simulated)
users and update the parameters iteratively. Liu et al. [35] com-
pare the actor-critic based RL4Rec method with four state encoders,
DRR-p, DRR-u, DRR-ave and DRR-att, in simulators generated from
two datasets [17] containing temporal information and two datasets
not containing temporal information [14, 38]. They conclude that:
(1) state encoders that utilize user embeddings outperform state
encoders without user embeddings; (2) the average pooling schema
can decrease the dimensionality of the state representation to re-
duce overfitting and improve recommendation performance; and
(3) the attention-based state encoder provides the best performance
among the four state encoders introduced above.

5 OUR REPRODUCED STATE ENCODER
COMPARISON

Having specified the setting of Liu et al. [35]’s study (cf. Section 4),
we generalize Liu et al.’s finding to four directions and can sum-
marize the following key differences: (1) Different simulated
environments: We adopt SOFA, the debiased simulator, which
mitigates the effect of bias present in logged data when generating
user preferences on items; in contrast, Liu et al. [35] use a simula-
tion directly generated from logged data without considering bias.
(2) Different RL method: We apply DQN, which is widely used in

RL4Rec research and has a simpler structure with optimizing only
one objective, whereas Liu et al. [35] apply the actor-critic method.
(3)More state encoders: Besides the four state encoders proposed
by Liu et al. [35], we expand the comparison by adding three more
state encoders based on typical neural network architectures: MLP,
GRU and CNN, which are widely used in recommendation methods
to generate representations according to historical user interactions.
(4)Different dataset: Our comparison uses the Yahoo! R3, which is
also used by Liu et al. [35], as well as the Coat shopping dataset [47],
which is not considered in [35]. To the best of our knowledge, these
two datasets are the only publicly available datasets that can be
used to unbiasedly simulate recommendations, since part of their
data is gathered on randomized recommendations. Unfortunately,
there are two more datasets used by Liu et al. [35] that cannot be
used in SOFA due to a lack of randomized data for debiasing.

It is crucial to understand whether the choice of state encoder
is important, and if so, what factors should be considered when
making this choice. In particular, the aim of our reproducibility
study is to analyze whether the choice of state encoder is robust
w.r.t. the effect of bias, the choice of RL method, and the sources of
data used. The differences listed above allow us to address this aim
and investigate whether the findings of Liu et al. [35] generalize
along these dimensions.

Below, we describe the setting inwhichwe reproduce and expand
on the comparisons performed by Liu et al. [35]. Section 5.1 details
the debiased SOFA simulator that we use, Section 5.2 explains the
DQN RL method that is applied, and finally, Section 5.3 lists the
state encoders included in our comparison.

5.1 Simulator for OFfline leArning and
evaluation (SOFA)

To mitigate the effect of bias present in logged data, Huang et al.
[22] propose a debiased simulator, named SOFA, which consists of
two components: (1) a debiased user-item rating matrix to present
user preferences for items, and (2) a user choice model to simulate
user feedback and generate the next state and the immediate reward.
The bias mitigation step is applied between the logged data and
the learned user preference prediction model, thereby mitigating
the bias originating from the logged data from affecting the user
preference prediction model. User behavior (e.g., ratings) could be
affected by various forms of selection bias, e.g., users tend to rate
more popular items (popularity bias) [43, 51] or the items that they
expect to enjoy beforehand (positivity bias) [43]. This is generally
modelled by decomposing the probability of observing a rating
𝑦𝑢,𝑖 given by user 𝑢 on item 𝑖 into (1) the preference 𝑃 (𝑦𝑢,𝑖), i.e.,
the distribution over rating values the user 𝑢 would give to item 𝑖;
and (2) the propensity 𝑃 (𝑜𝑢,𝑖), i.e., the probability of observing any
rating from user 𝑢 for item 𝑖 in the dataset. The assumed model is
thus:

𝑃 (𝑜𝑢,𝑖 , 𝑦𝑢,𝑖) = 𝑃 (𝑜𝑢,𝑖)𝑃 (𝑦𝑢,𝑖), (7)

where 𝑜𝑢,𝑖 denotes the observation indicator: 𝑜𝑢,𝑖 = 1 if the rating
𝑦𝑢,𝑖 is observed, otherwise,𝑜𝑢,𝑖 = 0 indicates a rating ismissing. Due
to bias, certain ratings are more likely to be observed than others.
In other words, 𝑃 (𝑜𝑢,𝑖) is not uniform over all user-item pairs. As
a result, naively ignoring the propensities during evaluation or
optimization gives more weight to the user-item pairs that are

overrepresented due to bias [47], e.g., giving the most weight to
the most popular items. In turn, this results in biased user rating
predictions 𝑦𝑢,𝑖 that fail to match the true user ratings 𝑦𝑢,𝑖 . The
bias mitigation step of SOFA applies inverse propensity scoring
(IPS) [26] to inverselyweight ratings according to the corresponding
observation probabilities so that, in expectation, each user-item pair
is represented equally. Let 𝛿 (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖) indicate the loss resulting
from the match between true rating 𝑦𝑢,𝑖 and the predicted rating
𝑦𝑢,𝑖 [47]:

E[LIPS] ∝ E
[
𝛿 (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖)
𝑃 (𝑜𝑢,𝑖 = 1)

]
=
E[𝑜𝑢,𝑖]𝛿 (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖)

𝑃 (𝑜𝑢,𝑖 = 1) =𝛿 (𝑦𝑢,𝑖 , 𝑦𝑢,𝑖). (8)

Therefore, using the IPS debiasingmethod, SOFA can learn debiased
user preferences for items and mitigate the effect of bias on the
resulting simulated user behavior and the final produced RL4Rec
methods [22].

Before the interaction starts, SOFA uniformly randomly samples
a batch of users and initializes their states as empty; then SOFA
interacts with RL4Rec methods over ten turns. Within SOFA, the
RL4Rec methods aim to maximize the cumulative number of clicks
received over ten interaction turns, and are accordingly evaluated
on the cumulative number of clicks they receive over ten interaction
turns. Furthermore, SOFA provides a general DQN-based RL4Rec
framework, which Section 5.2 describes in detail.

5.2 Deep Q-Network based recommendation
Deep Q-Networks (DQNs) [39] are based on Q-learning, one typ-
ical value-based RL method [54], while the actor-critic methods
integrate a value-based method with the policy gradient REIN-
FORCE method [55]. As a result, DQNs have a simpler structure
than actor-critic methods by only optimizing one objective; thus,
while actor-critic methods are potentially more powerful for han-
dling large state and action spaces, DQNs can be more data-efficient.
DQNs have been widely used in RL4Rec to improve recommenda-
tion performance [9, 10, 25, 33, 34, 36, 44, 53, 60, 65, 67, 68]. For
these reasons, we follow SOFA and choose to use the basic DQN
for our reproducibility study. We optimize the DQN by fitting its
predicted state-action function𝑄 (𝑠, 𝑎;\) to the expected discounted
cumulative reward

∑
𝑡 𝛾

𝑡𝑟𝑡 . To stabilize the training process, DQN
introduces a behavior network separate from the target network.
Here, we apply a state encoder as the behavior network and an
identical state encoder as the target network. These two state en-
coders have the same structure and use the same item embeddings,
but are updated in different ways. Moreover, DQN makes use of
experience replay and employs a replay memory D to store the
agent’s experience, i.e., the user interactions with the recommended
items in the RL4Rec domain.

Given a transition (𝑠𝑡−1, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡) ∈ D, the behavior network
estimates Q-value function 𝑄 (𝑠𝑡−1, 𝑎𝑡 ;\) on the given state-action
pair (𝑠𝑡−1, 𝑎𝑡), where \ denotes the parameters of the behavior
network; the target network is used to estimate Q-value function
𝑄 ′ (𝑠𝑡 , 𝑎;\ ′) for any action 𝑎 ∈ A given state 𝑠𝑡 , with the parame-
ters \ ′ fixed and periodically copied from \ in the behavior network.
Following [39], the parameters \ of the behavior network are up-
dated by minimizing the following smooth L1 loss function for

steady gradients with the Adam optimizer:

L(\) = E(𝑠𝑡−1,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡)∼𝐷

{
0.5(𝛿TD)2 if |𝛿TD | < 1,
|𝛿TD | otherwise.

(9)

𝛿TD = 𝑟𝑡 + 𝛾 max
𝑎

𝑄 ′ (𝑠𝑡 , 𝑎;\ ′) −𝑄 (𝑠𝑡−1, 𝑎𝑡 ;\) . (10)

Note that the parameters \ ′ of the target network are not updated
in each learning step, but periodically replaced by \ after multiple
learning steps.

5.3 State encoders in our comparison
As described in Section 3, the state encoder is used to generate
representations of the state that can be used as input to the ap-
proximated state-action value function. The choice of state encoder
can have a large impact on the performance of the RL4Rec sys-
tem [35]. Accordingly, it is crucial to select an appropriate and
effective state encoder. Since Liu et al. [35] have not made their
source code publicly available, we have reimplemented the four
state encoders of their original comparison (see Section 4): DRR-p,
DRR-u, DRR-ave and DRR-att. Due to the increasing importance of
privacy and the fact that SOFA does not provide user information,
we drop the user embedding w.r.t. the user id and add user feedback
to the recommended items to obtain user preferences in these four
state encoders, renamed as pairwise local dependency between
items (PLD), bag of items (BOI), average (Avg) and Attention. Ad-
ditionally, we consider three more typical neural networks – MLP,
GRU and CNN – when constructing the state encoders.

We use 𝒒𝑖 to denote the embedding of item 𝑖 and 𝒇𝑖 for the em-
bedding of feedback 𝑓𝑖 ∈ {0, 1} from the user on the item 𝑖 . Given
state 𝑠𝑡 = ([𝑖1, 𝑖2, . . . , 𝑖𝑡], [𝑓1, 𝑓2, . . . , 𝑓𝑡]), we have the correspond-
ing item embeddings [𝒒𝑖1 , 𝒒𝑖2 , . . . , 𝒒𝑖𝑡] and feedback embeddings
[𝒇𝑖1 ,𝒇𝑖2 , . . . ,𝒇𝑖𝑡]. The state-action value function 𝑄 (𝑠𝑡 , 𝑎) can be
approximated by the following state encoders:
BOI: Corresponding to DRR-u from Liu et al. [35], the state repre-

sentation 𝒔BOI𝑡 is formulated as a list of weighted element-wise
products of historical item embeddings and the corresponding
feedback embeddings. Then, one linear layer is applied and the
dimensionality of the output space is set to the number of items:

𝒔BOI𝑡 = [{𝑤𝑖𝒒𝑖 ⊗ 𝒇𝑖 | 𝑖 ∈ {𝑖1, 𝑖2, . . . 𝑖𝑡 }}],

𝑄 (𝑠𝑡 , 𝑎) =𝑾⊤𝒔BOI𝑡 + 𝑏.
(11)

PLD: Corresponding to DRR-p from Liu et al. [35], the pairwise lo-
cal dependency between items 𝑒𝑖, 𝑗 is also considered in modeling
state representation 𝒔PLD𝑡 :

𝒔PLD𝑡 = [{𝑤𝑖𝒒𝑖 ⊗ 𝒇𝑖 | 𝑖 ∈ {𝑖1, 𝑖2, . . . 𝑖𝑡 }},
{𝑒𝑖, 𝑗 | 𝑖, 𝑗 ∈ {𝑖1, 𝑖2, . . . , 𝑖𝑡 }}],

𝑒𝑖, 𝑗 = 𝑤𝑖 (𝒒𝑖 ⊗ 𝒇𝑖)⊤ (𝒒 𝑗 ⊗ 𝒇𝑗)𝑤 𝑗 ,

𝑄 (𝑠𝑡 , 𝑎) =𝑾⊤𝒔PLD𝑡 + 𝑏.

(12)

Avg: Corresponding to DRR-ave from Liu et al. [35], one linear
layer is applied with no activation function and the dimension-
ality of the output space is set to the number of items:

𝑄 (𝑠𝑡 , 𝑎) =𝑾⊤ave({𝒒𝑖 ⊗ 𝒇𝑖 |𝑖 ∈ {𝑖1, 𝑖2, . . . , 𝑖𝑡 }}) + 𝑏, (13)

where ave(·) denotes the component-wise average operator on

a set of vectors; and𝑾 and 𝑏 are the weight and bias term of the
linear layer, respectively.

MLP: Novel in our comparison, on top of Avg, we lift the linear
assumption of state and state-action value function by applying
a non-linear activation function 𝜎 , e.g., tanh, ReLU, or sigmoid:

𝑄 (𝑠𝑡 , 𝑎) = 𝜎 (𝑾⊤ave({𝒒𝑖 ⊗ 𝒇𝑖 |𝑖 ∈ {𝑖1, 𝑖2, . . . , 𝑖𝑡 }}) + 𝑏) . (14)

CNN: Novel in our comparison, a basic CNN with one convolution
layer and one max-pooling layer is applied; to compute 𝑄 (𝑠𝑡 , 𝑎),
a fully-connected layer is also adopted with the dimensionality
being the number of items:

𝑄 (𝑠𝑡 , 𝑎) =𝑾⊤max(𝑊𝐶 (([𝒒𝑖1 , . . . , 𝒒𝑖𝑡 ,𝒇𝑖1 , . . . ,𝒇𝑖𝑡]⊤))) + 𝑏, (15)

wheremax(·) denotes themax operator of themax-pooling layer;
𝑊𝐶 indicates the weight function of a l-dilated convolution filter
of size 3×3 and the activation function ReLU; and𝑾 and𝑏 are the
weight and bias term of the fully-connected layer, respectively.

GRU: Novel in our comparison, a basic GRU layer and a dense
layer are applied:

𝒉𝑘 =𝑊𝐺 (𝒉𝑘−1, 𝒒𝑖𝑘 ⊗ 𝒇𝑖𝑘), ∀𝑘 = 1, 2, . . . , 𝑡

𝑄 (𝑠𝑡 , 𝑎) =𝑾⊤𝒉𝑡 + 𝑏,
(16)

where𝑊𝐺 indicates the weight function of the GRU unit with
the activation funtion tanh; and 𝒉0 is set as a zero-vector. The
hidden state vector 𝒉𝑘 is computed conditioned on the previous
hidden state vector 𝒉𝑘−1 and the input 𝒒𝑖𝑘 ⊗ 𝒇𝑖𝑘 .

Attention: Corresponding to DRR-att from Liu et al. [35], follow-
ing [3] we insert an attention layer into the GRU-based state
encoder:

𝑎𝑘 =
exp(𝑎′

𝑘
)∑𝑡

𝑘 ′=1 exp(𝑎
′
𝑘 ′
)
, 𝑎′

𝑘
= (𝑾⊤𝐴 𝒉𝑡)⊤𝒉𝑘 , (17)

𝑄 (𝑠𝑡 , 𝑎) =𝑾⊤
[(

𝑡∑︁
𝑘=1

𝑎𝑘𝒉𝑘

)
, ℎ𝑡

]
+ 𝑏, (18)

where𝑊𝐴 denotes the weight function of the attention layer; 𝑎𝑘
denotes the attention weight on the hidden state vector 𝒉𝒕 ; and
the attentive combination of all the hidden state vectors is used
to compute the state-action value function 𝑄 (𝑠𝑡 , 𝑎).

6 EXPERIMENTAL SETUP
In this section, we describe the experiments performed to answer
the research questions presented in Section 1.
Datasets and simulators. We use SOFA to generate two debiased
simulations that simulate user behavior based on two real-world
datasets: Yahoo! R3 [38] and Coat shopping [47], which – to the
best of our knowledge – are the only publicly available datasets
that include a uniformly-random sampled test-set that allows for
unbiased evaluation. The number of users in the Yahoo! R3 and Coat
shopping datasets are 15,400 and 290, respectively; and the number
of items are 1,000 and 300, respectively. Both datasets include a
biased training set and an unbiased test set: the training set contains
ratings observed from natural real-world user behavior, whereas the
test set contains ratings asked from users on uniformly randomly
sampled items. Consequently, the training set is affected by the
forms of bias present in standard user interactions, but the test set
is unaffected by any selection bias since it relies on uniform random

sampling. The simulations used for training RL4Rec methods are
based on debiased user preferences generated from IPS-based rating
prediction methods (Eq. 8) on the biased training set; in contrast,
the evaluation of the RL4Rec methods is performed on the unbiased
simulations generated from the unbiased test sets.
Hyperparameters. The required hyperparameters come in two
kinds: (1) Hyperparameters of the used DQN: we follow the hy-
perparameters reported by Huang et al. [22] (see Table 1) and fix
the values for the DQN based RL4Rec methods with different state
encoders. (2) Hyperparameters used in the state encoders: the com-
mon hyperparameters are tuned per state encoder in the following
ranges: learning rate [∈ {10−5, 10−4, 10−3} and the dimension of
item embedding 𝑑 ∈ {16, 32, 64}. Additionally, the dimensions of
the weight functions in the CNN, GRU and attention state encoders
are taken from 𝑑′ ∈ {16, 32, 64}.
Evaluation metrics. As introduced in Section 5.1 we use the cumu-
lative number of clicks received over 10 interaction turns in the
unbiased simulated online environments to evaluate the perfor-
mance of the state encoders in the Deep Q-Network based recom-
mendation (DQN4Rec) method. The cumulative or average number
of clicks is a common choice of metric [35, 65] for online evalua-
tion of RL4Rec since it can indicate the long-term user engagement
performance achieved by RL4Recs.
Release of implementation. The complete implementation of our
experiments with accompanying documentation and additional
resources are publicly available for future reproducibility at https:
//github.com/BetsyHJ/RL4Rec.

7 EXPERIMENTAL RESULTS AND ANALYSIS
Our experiments results are meant to determine whether the main
finding of Liu et al. [35] can be reproduced:

The attention state encoder for RL4Rec provides signifi-
cantly higher performance than the BOI, PLD and Avg
state encoders.

Moreover, in our analysis we investigate whether this finding gen-
eralizes in the four directions described at the start of Section 5.

7.1 Comparison of state encoders on debiased
simulation of Yahoo! R3 dataset

We start our analysis by considering our first research question
(RQ1): whether Liu et al. [35]’s finding generalizes to DQN-based
RL4Rec methods when evaluated in the debiased SOFA simulator and
compared with more state encoders.

Fig. 2(a) (top) displays the evaluation performance of the opti-
mized policies based on four state encoders proposed by Liu et al.
[35]; the reported metric is the average cumulative number of clicks
received over 10 interaction turns. The first interaction turn is al-
ways represented by the empty state, and as a result, the choice of
state encoder is inconsequential and the performance of all state
encoders is identical. As the number of interaction turns becomes
larger, the differences between the state encoders become more ap-
parent. On the simulations of Yahoo! R3 dataset – the same dataset
used by Liu et al. –, as shown in Fig. 2(a) (top), we see results con-
sistent with those reported by Liu et al.: (1) BOI and PLD perform
comparably and worse than Avg; and (2) on average the attention

https://github.com/BetsyHJ/RL4Rec
https://github.com/BetsyHJ/RL4Rec

Table 1: List of hyperparameters for DQN and their values.

Hyperparameter Definition Value

Memory Size The number of transitions stored in the replay memory. 6,000
Discount factor Discount factor 𝛾 used in the DQN. 0.9
Epsilon The minimal probability of recommending an item randomly when taking an action. 0.1
Epsilon decay frequency The number of step with which the epsilon 𝜖 (initial value as 0.8) minus 0.1. 20,000
Minibatch size The number of training cases randomly selected from replay memory and being used

to update the parameters of policy.
128

Targetnet replacement frequency The number of step with which the target network is updated. 20

BOI PLD Avg Attention MLP CNN GRU

0.2

0.4

0.6

0.8

1.0

1.2

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

1 2 3 4 5 6 7 8 9 10

recommendation turn

0.2

0.4

0.6

0.8

1.0

1.2

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

(a) Yahoo! R3.

0.0

0.5

1.0

1.5

2.0

2.5

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

1 2 3 4 5 6 7 8 9 10

recommendation turn

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

(b) Coat shopping.

Figure 2: Comparisons of evaluation performance (the cumulative number of clicks) among policies with four state encoders
proposed by Liu et al. [35] (top), and between attention and the additional MLP,1 GRU, and CNN-based state encoders (bottom)
on the unbiased simulations generated from the unbiased test sets of Yahoo! R3 and Coat shopping datasets, respectively.

state encoder outperforms BOI, PLD, and Avg.
Fig. 2(a) (bottom) displays the evaluation performance of the

attention, MLP,1 CNN and GRU state encoders on the Yahoo! R3
dataset. We see that on average the attention state encoder performs
similarly to the GRU state encoder over ten interaction turns and
better than the CNN state encoder. Thus, we confirm that attention
is the optimal choice in our experimental setting on the Yahoo! R3,
the same dataset as used in the original comparison [35]. The main
difference between MLP and GRU is the recurrent nature of the
latter, thus it is the likely reason for why GRU outperforms MLP.
Similarly, the higher performance of attention over GRU must be

1 For the MLP-based state encoder, we use a ReLU for Yahoo! R3 and tanh for the Coat
shopping dataset, which we found to be the optimal choices for the corresponding
datasets.

because of the additional attention layer, as this is the sole difference
between the two state encoders.

We answer (RQ1) in the affirmative: Liu et al.’s finding regarding
the superiority of using the attention state encoder generalizes to
DQN-based RL4Recmethods when evaluating in the debiased SOFA
simulation based on the Yahoo! R3 dataset used by Liu et al., and
compared with three more state encoders, MLP, GRU, and CNN.

7.2 Comparison on a different dataset
Now that we have found Liu et al.’s finding to be reproducible
in a debiased simulation generated from the Yahoo! R3 dataset,
we consider the second research question (RQ2): whether it also
generalizes to a debiased simulation based on a different dataset.

Fig. 2(b) displays the performance of different state encoders

Table 2: Training time in seconds for 1,000 training steps.

Dataset BOI PLD Avg MLP CNN GRU Att

Coat 6.6 7.0 6.4 6.4 7.6 23.4 25.4
Yahoo! R3 9.0 9.6 8.4 9.4 10.8 26.8 30.4

on the debiased simulation based on the Coat shopping dataset,
which was not part of the original comparison [35]. We make two
observations from the top part of Fig. 2(b): (1) on average, PLD
performs better than BOI, but worse than Avg; (2) attention has
worse performance than Avg over 10 interaction turns. Further-
more, in the bottom part of Fig. 2(b) we see that: (3) attention does
not have better performance than the additional MLP, CNN and
GRU state encoders; (4) on average, attention performs comparably
with GRU and CNN, although CNN does suffer from a much higher
variance; (5) the MLP state encoder outperforms other state en-
coders significantly. Thus, in stark contrast with our results on the
Yahoo! R3 dataset, on the Coat shopping dataset we do not observe
the attention state encoder to have the highest performance.

Two potential reasons for this observed inconsistency between
the two datasets could be (1) the difference in size between the two
datasets: in contrast to attention, the Avg and MLP methods with
fewer parameters are possibly more effective on the smaller Coat
shopping dataset; and (2) the different recommendation scenarios:
there could be a stronger dependency between items in user inter-
actions in an online shopping scenario (Coat shopping) than in a
music recommendation scenario (Yahoo! R3).

Therefore, we answer (RQ2) negatively: Liu et al.’s finding does
not generalize to the debiased simulation with a different dataset.
In particular, attention is not the optimal choice of state encoder
for RL4Recs when evaluating in the Coat shopping dataset, which
was not considered by Liu et al. [35].

In addition, we also did not observe a consistent performance
for the additional MLP, CNN and GRU state encoders across the
two datasets. On the Yahoo! R3 dataset, GRU performs best (out
of the three) and MLP performs worst; yet on the Coat shopping
dataset GRU performs similarly to CNN but considerably worse
than MLP. This observation suggests that the relative effectiveness
of state encoders depends on the dataset to which they are applied.
Importantly, there is no single optimal state encoder applicable to
RL4Recs for all datasets.

7.3 Convergency of RL4Recs state encoders
Convergence is also a crucial property for RL4Rec methods because
they are more prone to divergence problems as they continuously
update recommendation policies while interacting with users. Next,
we investigate how the choice of state encoder affects the conver-
gence of DQN, in terms of the number of training steps and training
time needed to converge.

Fig. 3 displays the learning curves of policies with different state
encoders, which track the average cumulative number of clicks over
10 interaction turns on the debiased simulations on the Yahoo! R3
and the Coat shopping datasets. We observe that: (1) BOI and PLD
converge the earliest but to policies that receive only a small cumu-
lative number of clicks; (2) MLP has a similar convergence speed as

BOI and PLD but its performance at convergence greatly varies be-
tween the datasets; (3) MLP converges faster than Avg, suggesting
that its activation function speeds up the learning process; (4) at-
tention converges slightly slower than GRU, most likely due to
having more parameters; and (5) the convergence speed of CNN
greatly varies between the two different datasets. In summary, state
encoders with few parameters, e.g., Avg and MLP, converge faster
than those with more parameters, e.g., attention.

Furthermore, Table 2 clearly shows that the time for training on
the larger Yahoo! R3 dataset is longer than on the Coat shopping
dataset, which contains fewer items and users. As expected, Avg
and MLP have the fewest parameters and accordingly also require
less training time per thousand training steps. BOI and PLD take
slightly more time than Avg which could be explained by the higher
dimensionality of their state representations. Lastly, attention is
more time consuming than GRU, which is likely due to its addi-
tional attention layer. In summary, the attention state encoders
require a higher computation cost, despite the fact that they do
not always guarantee to reach the highest performance, e.g., on the
Coat shopping dataset.

7.4 Choice of activation functions for MLP
The MLP state encoders apply a non-linear activation function on
top of Avg and show varying evaluation performance when applied
to different datasets: we have seen that it performs best on the
Coat shopping dataset, but worse than Avg on Yahoo! R3, as shown
in Fig. 2 (bottom row). These observations prompt us to consider
(RQ3): whether the choice of activation functions should be taken into
account when using the MLP-based state encoder for RL4Recs.

Fig. 4 displays the comparison of evaluation performance be-
tween Avg and MLPs with the tanh, ReLU, and sigmoid activation
functions. We observe that: (1) interestingly, MLPs perform better
on the Yahoo! R3 dataset but worse than Avg on the Coat shopping
dataset; we speculate that this is due to the different sizes of the two
datasets and the different recommendation scenarios they repre-
sent; (2) for MLPs, sigmoid is the worst choice of activation function
for simulations on both datasets, probably because it is more prone
to the vanishing gradient problem [4]; and (3) the performance with
tanh and ReLU is not consistent across both datasets: tanh has the
best performance on Coat, but is worse than ReLU on Yahoo! R3.

Therefore, we answer (RQ3) in the affirmative: the choice of acti-
vation function should certainly be taken into account when using
MLP-based state encoders for RL4Rec. Furthermore, our observa-
tions also suggest that the choice of activation function greatly
depends on the dataset to which the MLP state encoder will be
applied.

8 CONCLUSION
In this paper, we have reproduced and generalized a previous
study by Liu et al. [35] regarding the choice of state encoder for
reinforcement learning for recommendations (RL4Recs) in four
directions: (1) a debiased simulated environment, named SOFA;
(2) RL4Rec methods based on Deep Q-Network (DQN), the most
popular RL method used in RL4Recs; (3) three additional state en-
coders based on three typical neural networks: multi-layer per-
ceptrons (MLPs), gated recurrent units (GRUs), and convolutional

BOI PLD Avg Attention MLP CNN GRU

1.0

1.1

1.2

1.3

1.4

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

0 200 400 600 800 1000

training step (thousand)

1.0

1.1

1.2

1.3

1.4

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

(a) Yahoo! R3.

0.5

1.0

1.5

2.0

2.5

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

0 50 100 150 200 250 300 350

training step (thousand)

0.5

1.0

1.5

2.0

2.5

3.0

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

(b) Coat shopping.

Figure 3: Learning curves tracking average cumulative number of clicks received by policies with four state encoders (top), and
with attention and additional MLP, GRU and CNN-based state encoders (bottom) on the debiased simulations generated from
training sets of Yahoo!R3 and Coat shopping datasets, respectively.

Avg MLP with tanh MLP with ReLU MLP with sigmoid

1 2 3 4 5 6 7 8 9 10

recommendation turn

0.2

0.4

0.6

0.8

1.0

1.2

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

(a) Yahoo! R3.

1 2 3 4 5 6 7 8 9 10

recommendation turn

0.0

0.5

1.0

1.5

2.0

2.5

3.0

cu
m

u
la

ti
ve

n
u

m
b

er
of

cl
ic

ks

(b) Coat shopping.

Figure 4: Evaluation performance (the cumulative number of clicks) of policies with Avg, and MLP state encoders with different
activation functions (tanh, ReLU, and sigmoid) on the simulations of Yahoo! R3 and Coat shopping datasets, respectively.

neural networks (CNNs); (4) besides the Yahoo! R3 dataset used
in the original study [35], we also considered the Coat shopping
dataset as the basis for debiased simulations. Our experimental
results show that the higher performance of the attention state
encoder over the bag of items (BOI), pairwise local dependency
between items (PLD), and average (Avg) state encoders is repro-
ducible in the debiased simulation generated from the Yahoo! R3
dataset, where DQN was used instead of actor-critic RL; moreover,

the attention state encoder also outperforms the three additional
multi-layer perceptron (MLP), convolutional neural network (CNN)
and gated recurrent unit (GRU) state encoders on the debiased sim-
ulation based on the Yahoo! R3 dataset. However, the attention state
encoder performed worse than Avg and MLP when the simulation
is based on the Coat shopping dataset, a dataset not used in [35],
despite the fact that it has the highest computational costs.

In summary, our results confirm that Liu et al.’s finding gen-

eralizes in the first three directions, i.e., the debiased simulation,
DQN-based RL4Rec method, and more state encoders, but does not
generalize to the debiased simulation generated from a different
dataset, i.e., the Coat shopping dataset. In addition, we have found
that the choice of activation function plays a crucial role when
constructing a state encoder for RL4Recs.

Future work should further investigate the importance of the
choice of RL methods for RL4Rec. A comparison of different RL
methods, such as DQN, REINFORCE and actor-critic, in various
RL4Rec frameworks could reveal whether comparisons of RL meth-
ods generalize across different settings. The resulting insights could
greatly aid researchers and practitioners in the RL4Rec domain.

IMPLEMENTATION RESOURCES AND DATA
To facilitate the reproducibility of the reported results, this study
only made use of publicly available data. Our complete experimen-
tal implementation is publicly available with detailed instructions
for reproducing our experiments at https://github.com/BetsyHJ/
RL4Rec.

ACKNOWLEDGEMENTS
This research was supported by the Hybrid Intelligence Center, a 10-
year program funded by the Dutch Ministry of Education, Culture
and Science through the Netherlands Organisation for Scientific
Research, https://hybrid-intelligence-centre.nl and partially by the
Google Research Scholar Program. All content represents the opin-
ion of the authors, which is not necessarily shared or endorsed by
their respective employers and/or sponsors.

REFERENCES
[1] Panagiotis Adamopoulos and Alexander Tuzhilin. 2014. On Over-Specialization

and Concentration Bias of Recommendations: Probabilistic Neighborhood Selec-
tion in Collaborative Filtering Systems. In RecSys. ACM, 153–160.

[2] M. Mehdi Afsar, Trafford Crump, and Behrouz Far. 2021. Reinforcement Learning
based Recommender Systems: A Survey. arXiv preprint arXiv:2101.06286 (2021).

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In ICLR.

[4] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning Long-Term
Dependencies with Gradient Descent is Difficult. IEEE transactions on neural
networks 5, 2 (1994), 157–166.

[5] Lucas Bernardi, Sakshi Batra, and Cintia Alicia Bruscantini. 2021. Simulations in
Recommender Systems: An Industry Perspective. arXiv preprint arXiv:2109.06723
(2021).

[6] Jiawei Chen, Hande Dong, XiangWang, Fuli Feng, MengWang, and Xiangnan He.
2020. Bias and Debias in Recommender System: A Survey and Future Directions.
arXiv preprint arXiv:2010.03240 (2020).

[7] Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and
Ed H Chi. 2019. Top-K Off-Policy Correction for a REINFORCE Recommender
System. In WSDM. ACM, 456–464.

[8] Ruey-Cheng Chen, Qingyao Ai, Gaya Jayasinghe, and W Bruce Croft. 2019.
Correcting for Recency Bias in Job Recommendation. In CIKM. ACM, 2185–2188.

[9] Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan Huang, and Hai-Hong
Tang. 2018. Stabilizing Reinforcement Learning in Dynamic Environment with
Application to Online Recommendation. In KDD. ACM, 1187–1196.

[10] Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, and Le Song. 2019.
Generative Adversarial User Model for Reinforcement Learning based Recom-
mendation System. In ICML. PMLR, 1052–1061.

[11] Xu Chen, Hongteng Xu, Yongfeng Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and
Hongyuan Zha. 2018. Sequential Recommendation with User Memory Networks.
In WSDM. ACM, 108–116.

[12] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[13] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy
Lillicrap, Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris,

and Ben Coppin. 2015. Deep Reinforcement Learning in Large Discrete Action
Spaces. arXiv preprint arXiv:1512.07679 (2015).

[14] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. 2001. Eigentaste:
A Constant Time Collaborative Filtering Algorithm. information retrieval 4, 2
(2001), 133–151.

[15] Claudio Greco, Alessandro Suglia, Pierpaolo Basile, and Giovanni Semeraro. 2017.
Converse-Et-Impera: Exploiting Deep Learning and Hierarchical Reinforcement
Learning for Conversational Recommender Systems. InAIxIA. Springer, 372–386.

[16] Sara Hajian, Francesco Bonchi, and Carlos Castillo. 2016. Algorithmic Bias:
From Discrimination Discovery to Fairness-Aware Data Mining. In KDD. ACM,
2125–2126.

[17] F Maxwell Harper and Joseph A Konstan. 2015. The Movielens Datasets: History
and Context. TiiS 5, 4 (2015), 1–19.

[18] Xiangnan He, Xiaoyu Du, Xiang Wang, Feng Tian, Jinhui Tang, and Tat-Seng
Chua. 2018. Outer Product-based Neural Collaborative Filtering. In IJCAI. ij-
cai.org, 2227–2233.

[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In WWW. ACM, 173–182.

[20] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2016. Session-based Recommendations with Recurrent Neural Networks. (2016).

[21] Daniel G Horvitz and Donovan J Thompson. 1952. A Generalization of Sampling
without Replacement from a Finite Universe. Journal of the American statistical
Association 47, 260 (1952), 663–685.

[22] Jin Huang, Harrie Oosterhuis, Maarten de Rijke, and Herke van Hoof. 2020. Keep-
ing Dataset Biases out of the Simulation: A Debiased Simulator for Reinforcement
Learning based Recommender Systems. In RecSys. ACM, 190–199.

[23] Jin Huang, Wayne Xin Zhao, Hongjian Dou, Ji-Rong Wen, and Edward Y Chang.
2018. Improving Sequential Recommendation with Knowledge-Enhanced Mem-
ory Networks. In SIGIR. ACM, 505–514.

[24] Eugene Ie, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing
Wang, Rui Wu, and Craig Boutilier. 2019. RecSim: A Configurable Simulation
Platform for Recommender Systems. arXiv preprint arXiv:1909.04847 (2019).

[25] Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh Agarwal, Rui Wu,
Heng-Tze Cheng, Morgane Lustman, Vince Gatto, Paul Covington, et al. 2019.
Reinforcement Learning for Slate-based Recommender Systems: A Tractable De-
composition and Practical Methodology. arXiv preprint arXiv:1905.12767 (2019).

[26] Guido W Imbens and Donald B Rubin. 2015. Causal Inference in Statistics, Social,
and Biomedical Sciences. Cambridge University Press.

[27] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
Learning-to-Rank with Biased Feedback. In WSDM. ACM, 781–789.

[28] Joseph DY Kang, Joseph L Schafer, et al. 2007. Demystifying Double Robustness:
A Comparison of Alternative Strategies for Estimating a Population Mean from
Incomplete Data. Statistical science 22, 4 (2007), 523–539.

[29] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A Contextual-
bandit Approach to Personalized News Article Recommendation. InWWW. ACM,
661–670.

[30] Huizhi Liang. 2020. Drprofiling: Deep Reinforcement User Profiling for Recom-
mendations in Heterogenous Information Networks. TKDE (2020).

[31] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2016. Continuous Control with
Deep Reinforcement Learning. In ICLR (Poster).

[32] Yuanguo Lin, Yong Liu, Fan Lin, Pengcheng Wu, Wenhua Zeng, and Chunyan
Miao. 2021. A Survey on Reinforcement Learning for Recommender Systems.
arXiv preprint arXiv:2109.10665 (2021).

[33] Dong Liu and Chenyang Yang. 2019. A Deep Reinforcement Learning Approach
to Proactive Content Pushing and Recommendation for Mobile Users. IEEE Access
7 (2019), 83120–83136.

[34] Feng Liu, Huifeng Guo, Xutao Li, Ruiming Tang, Yunming Ye, and Xiuqiang He.
2020. End-to-End Deep Reinforcement Learning based Recommendation with
Supervised Embedding. In WSDM. ACM, 384–392.

[35] Feng Liu, Ruiming Tang, Xutao Li, Weinan Zhang, Yunming Ye, Haokun Chen,
Huifeng Guo, Yuzhou Zhang, and Xiuqiang He. 2020. State Representation
Modeling for Deep Reinforcement Learning based Recommendation. Knowledge-
Based Systems 205 (2020), 106170.

[36] Su Liu, Ye Chen, Hui Huang, Liang Xiao, and Xiaojun Hei. 2018. Towards Smart
Educational Recommendations with Reinforcement Learning in Classroom. In
TALE. IEEE, 1079–1084.

[37] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong,
and Ed H Chi. 2020. Off-policy Learning in Two-stage Recommender Systems.
In WWW. ACM / IW3C2, 463–473.

[38] Benjamin M Marlin and Richard S Zemel. 2009. Collaborative Prediction and
Ranking with Non-Random Missing Data. In RecSys. ACM, 5–12.

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. 2015. Human-level Control through Deep Reinforcement
Learning. nature 518, 7540 (2015), 529–533.

[40] Tien T Nguyen, Pik-Mai Hui, F Maxwell Harper, Loren Terveen, and Joseph A

https://github.com/BetsyHJ/RL4Rec
https://github.com/BetsyHJ/RL4Rec
https://hybrid-intelligence-centre.nl

Konstan. 2014. Exploring the Filter Bubble: the Effect of Using Recommender
Systems on Content Diversity. In WWW. ACM, 677–686.

[41] Feiyang Pan, Qingpeng Cai, Pingzhong Tang, Fuzhen Zhuang, and Qing He. 2019.
Policy Gradients for Contextual Recommendations. In WWW. ACM, 1421–1431.

[42] Eli Pariser. 2011. The Filter Bubble: How the New Personalized Web is Changing
What We Read and How We Think. Penguin.

[43] Bruno Pradel, Nicolas Usunier, and Patrick Gallinari. 2012. Ranking with Non-
Random Missing Ratings: Influence of Popularity and Positivity on Evaluation
Metrics. In RecSys. ACM, 147–154.

[44] Faxin Qi, Xiangrong Tong, Lei Yu, and Yingjie Wang. 2019. Personalized Project
Recommendations: Using Reinforcement Learning. EURASIP Journal on Wireless
Communications and Networking 2019, 1 (2019), 1–17.

[45] James M Robins, Andrea Rotnitzky, and Lue Ping Zhao. 1994. Estimation of
Regression CoefficientsWhen Some Regressors are not Always Observed. Journal
of the American statistical Association 89, 427 (1994), 846–866.

[46] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros
Karatzoglou. 2018. RecoGym: A Reinforcement Learning Environment for the
problem of Product Recommendation in Online Advertising. arXiv preprint
arXiv:1808.00720 (2018).

[47] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and
Thorsten Joachims. 2016. Recommendations as Treatments: Debiasing Learning
and Evaluation. In ICML. JMLR.org, 1670–1679.

[48] Bichen Shi, Makbule Gulcin Ozsoy, Neil Hurley, Barry Smyth, Elias Z Tragos,
James Geraci, and Aonghus Lawlor. 2019. PyRecGym: A Reinforcement Learning
Gym for Recommender Systems. In RecSys. ACM, 491–495.

[49] Jing-Cheng Shi, Yang Yu, Qing Da, Shi-Yong Chen, and An-Xiang Zeng. 2019.
Virtual-taobao: Virtualizing Real-world Online Retail Environment for Reinforce-
ment Learning. In AAAI, Vol. 33. AAAI Press, 4902–4909.

[50] Harald Steck. 2010. Training and Testing of Recommender Systems on Data
Missing Not at Random. In KDD. ACM, 713–722.

[51] Harald Steck. 2011. Item Popularity and Recommendation Accuracy. In RecSys.
ACM, 125–132.

[52] Yueming Sun and Yi Zhang. 2018. Conversational Recommender System. In
SIGIR. ACM, 235–244.

[53] Peter Sunehag, Richard Evans, Gabriel Dulac-Arnold, Yori Zwols, Daniel Visentin,
and Ben Coppin. 2015. Deep Reinforcement Learning with Attention for Slate
Markov Decision Processes with High-Dimensional States and Actions. arXiv
preprint arXiv:1512.01124 (2015).

[54] Richard S Sutton and Andrew G Barto. 1998. Reinforcement Learning: An Intro-
duction. MIT press.

[55] Ronald J Williams. 1992. Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning. Machine learning 8, 3 (1992), 229–256.

[56] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent Recommender Networks. In WSDM. ACM, 495–503.

[57] Yikun Xian, Zuohui Fu, Shan Muthukrishnan, Gerard De Melo, and Yongfeng
Zhang. 2019. Reinforcement Knowledge Graph Reasoning for Explainable Rec-
ommendation. In SIGIR. ACM, 285–294.

[58] Feng Yu, Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. A Dynamic
Recurrent Model for Next Basket Recommendation. In SIGIR. ACM, 729–732.

[59] Tong Yu, Yilin Shen, Ruiyi Zhang, Xiangyu Zeng, and Hongxia Jin. 2019. Vision-
Language Recommendation via Attribute Augmented Multimodal Reinforcement
Learning. In MM. ACM, 39–47.

[60] Zhang Yuyan, Su Xiayao, and Liu Yong. 2019. A Novel Movie Recommendation
System based on Deep Reinforcement Learning with Prioritized Experience
Replay. In ICCT. IEEE, 1496–1500.

[61] Shuo Zhang and Krisztian Balog. 2020. Evaluating Conversational Recommender
Systems via User Simulation. In KDD. ACM, 1512–1520.

[62] Chenfei Zhao and Lan Hu. 2019. CapDRL: A Deep Capsule Reinforcement
Learning for Movie Recommendation. In PRICAI. Springer, 734–739.

[63] Xiangyu Zhao, Long Xia, Zhuoye Ding, Dawei Yin, and Jiliang Tang. 2019. Toward
Simulating Environments in Reinforcement Learning based Recommendations.
arXiv preprint arXiv:1906.11462 (2019).

[64] Xiangyu Zhao, Long Xia, Liang Zhang, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2018. Deep Reinforcement Learning for Page-wise Recommendations. In
RecSys. ACM, 95–103.

[65] Xiangyu Zhao, Liang Zhang, Zhuoye Ding, Long Xia, Jiliang Tang, and Dawei
Yin. 2018. Recommendations with Negative Feedback via Pairwise Deep Rein-
forcement Learning. In KDD. ACM, 1040–1048.

[66] Xiangyu Zhao, Liang Zhang, Long Xia, Zhuoye Ding, Dawei Yin, and Jiliang
Tang. 2017. Deep Reinforcement Learning for List-Wise Recommendations. arXiv
preprint arXiv:1801.00209 (2017).

[67] Xiangyu Zhao, Xudong Zheng, Xiwang Yang, Xiaobing Liu, and Jiliang Tang.
2020. Jointly Learning to Recommend and Advertise. In KDD. ACM, 3319–3327.

[68] Guanjie Zheng, Fuzheng Zhang, Zihan Zheng, Yang Xiang, Nicholas Jing Yuan,
Xing Xie, and Zhenhui Li. 2018. DRN: ADeep Reinforcement Learning Framework
for News Recommendation. In WWW. ACM, 167–176.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries – RL4Rec
	4 Original State Encoder Comparison
	5 Our Reproduced State Encoder Comparison
	5.1 Simulator for OFfline leArning and evaluation (SOFA)
	5.2 Deep Q-Network based recommendation
	5.3 State encoders in our comparison

	6 Experimental Setup
	7 Experimental Results and Analysis
	7.1 Comparison of state encoders on debiased simulation of Yahoo! R3 dataset
	7.2 Comparison on a different dataset
	7.3 Convergency of RL4Recs state encoders
	7.4 Choice of activation functions for MLP

	8 Conclusion
	References

