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ABSTRACT
Plackett-Luce gradient estimation enables the optimization of sto-
chastic ranking models within feasible time constraints through
sampling techniques. Unfortunately, the computational complex-
ity of existing methods does not scale well with the length of the
rankings, i.e. the ranking cutoff, nor with the item collection size.

In this paper, we introduce the novel PL-Rank-3 algorithm that
performs unbiased gradient estimation with a computational com-
plexity comparable to the best sorting algorithms. As a result, our
novel learning-to-rank method is applicable in any scenario where
standard sorting is feasible in reasonable time. Our experimental
results indicate large gains in the time required for optimization,
without any loss in performance. For the field, our contribution
could potentially allow state-of-the-art learning-to-rank methods
to be applied to much larger scales than previously feasible.
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1 INTRODUCTION
Learning-to-Rank (LTR) methods optimize ranking systems for
search and recommendation purposes [15]. In the field of Information
Retrieval (IR), they are generally deployed to maximize well-known
ranking metrics such as: Discounted Cumulative Gain (DCG) or
precision [13]. The main difficulty with the LTR task is that ranking
metrics are non-differentiable, discrete and very non-smooth due
to the underlying sorting process [4]. In broad terms, the exist-
ing solutions to this problem can be divided into two categories:
heuristic bounds or approximations of ranking metrics or their gra-
dients [3, 4, 10, 14, 22, 24]; and optimizing a probabilistic ranking
model instead of a deterministic model [5, 18, 23, 25]. The latter

This work is licensed under a Creative Commons Attribution
International 4.0 License.

SIGIR ’22, July 11–15, 2022, Madrid, Spain.
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8732-3/22/07.
https://doi.org/10.1145/3477495.3531842

category does not have issues with differentiability or smooth-
ness because their methods optimize a probabilistic distribution
over rankings. Recently, probabilistic ranking models have also
received additional attention for their applicability to ranking fair-
ness tasks [8]. Since probabilistic models are able to divide exposure
over items more fairly than deterministic models.

Oosterhuis [18] introduced the PL-Rank method to efficiently op-
timize Plackett-Luce (PL) ranking models: a specific type of ranking
model based on decision theory [16, 19]. They use Gumbel sam-
pling [2, 11] to quickly sample many rankings from a PL ranking
model, and subsequently, apply the PL-Rank-1 or PL-Rank-2 algo-
rithm to these samples to unbiasedly approximate the gradient of a
ranking metric w.r.t. the model. While PL-Rank provides a signifi-
cant contribution to the LTR field, we recognize two shortcomings
in the work of Oosterhuis [18]: neither PL-Rank-1 or PL-Rank-2
scale well with long rankings; and they do not compare PL-Rank
to the earlier and comparable StochasticRank algorithm [23].

This paper addresses both of these shortcomings: our main con-
tribution is the novel PL-Rank-3 algorithm that computes the same
approximation as PL-Rank-2 while minimizing its computational
complexity. PL-Rank-3 has computional costs in the same order as
the best sorting algorithms; we posit that this is the lowest order
possible for a metric-based LTR method. Our experimental compar-
ison includes both the previous PL-Rank-2 and StochasticRank as
baselines, providing the first comparison between these two meth-
ods. The introduction of PL-Rank-3 is exciting for the LTR field, as
it pushes the limit of the minimal computational complexity that
LTR methods can have. Potentially, it may enable future LTR to be
applied to much larger scales than currently feasible.

2 BACKGROUND: PL-RANK-2
Let 𝜋 indicate a PL ranking model based on a scoring function 𝑓
with 𝑓 (𝑑) indicating the score for item𝑑 ; the probability of sampling
ranking 𝑦 from item set 𝐷 from 𝜋 is then:

𝜋 (𝑦) =
∏
𝑑∈𝑦

𝜋 (𝑑 |𝑦1:𝑘−1, 𝐷), 𝜋 (𝑑 |𝑦1:𝑘−1, 𝐷) =
𝑒 𝑓 (𝑑 )1[𝑑 ∉ 𝑦1:𝑘−1]∑
𝑑 ′∈𝐷\𝑦1:𝑘−1 𝑒

𝑓 (𝑑 ′ ) ,

where 𝑦1:𝑘−1 indicates the ranking from rank 1 up to 𝑘 − 1. In other
words, the probability of placing 𝑑 at rank 𝑘 is 𝑒 𝑓 (𝑑 ) divided by
the 𝑒 𝑓 (𝑑

′ ) of all unplaced items (similar to a SoftMax activation
function), unless 𝑑 was already placed at an earlier rank then it has
a zero probability. The probability of the entire ranking 𝑦 is simply
the product of all its individual item placements.

PL-Rank optimizes 𝑓 so that the metric value of sampled rank-
ings are maximized in expectation [18]. PL-Rank assumes ranking
metrics can be decomposed into weights per rank 𝜃𝑘 and relevance
of an item 𝜌𝑞,𝑑 [17]. Its objective is thus to maximize the expected
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Table 1: Overview of LTRmethods in terms of their relevant theoretical properties: (i) Reliance on an iteration over itempairs; (ii)
Directed by themodel’s full-ranking behavior; (iii) Directed bymetric to be optimized; (iv) Usage of sample-based approximation;
(v) Applicability to general rank-based exposure metrics (e.g. for ranking fairness); (vi) Computational complexity w.r.t. number
of items 𝐷 and length of ranking 𝐾 . The properties of a method are indicated by ✓or ? when it is open to interpretation and 𝐷2∗

indicates the number of item-pairs with unequal relevance labels.

method name pairwise
ranking- metric- sample rank-based computational

notes
based based approximation exposure complexity

Pointwise [10] 𝐷 not an LTR loss
SoftMax Cross-Entropy [21] 𝐷

Pairwise [14] ✓ 𝐷2* memory efficient
Listwise/ListMLE [5, 25] ✓ 𝐷𝐾

SoftRank [22] ✓ ? ✓ 𝐷3

ApproxNDCG [3] ✓ ? ✓ 𝐷2 proven bound
LambdaRank/Loss [4, 24] ✓ ✓ ✓ 𝐷2∗ + 𝐷 log(𝐷) proven bound
StochasticRank [23] ? ✓ ✓ ✓ ✓ 𝐷𝐾 policy-gradient
PL-Rank-1/2 [18] ✓ ✓ ✓ ✓ 𝐷𝐾 policy-gradient
PL-Rank-3 (ours) ✓ ✓ ✓ ✓ 𝐷 + 𝐾 log(𝐷) policy-gradient

metric value over its sampling procedure, for a single query 𝑞:

R(𝑞) =
∑︁
𝑦

𝜋 (𝑦)
∑︁
𝑑∈𝐷𝑞

𝜃rank(f,q,d)𝜌𝑞,𝑑 = E𝑦

[ ∑︁
𝑑∈𝐷𝑞

𝜃rank(f,q,d)𝜌𝑞,𝑑

]
.

The rank weights can be chosen to match well-known ranking
metrics, e.g. DCG: 𝜃DCG@K

𝑘
= 1[𝑘 ≤ 𝐾]/log2 (1 + 𝑘) [13]; or preci-

sion: 𝜃prec
𝑘

= 1[𝑘 ≤ 𝐾]. To keep our notation brief, we will omit
𝑞 when denoting the relevances 𝜌𝑞,𝑑 = 𝜌𝑑 . Oosterhuis [18] based
the PL-Rank-2 method on the following formulation of the policy
gradient:

𝛿R(𝑞)
𝛿 𝑓 (𝑑) = E𝑦

[(
𝐾∑︁

𝑘=rank(𝑑,𝑦)+1
𝜃𝑘𝜌𝑦𝑘

)

+
rank(𝑑,𝑦)∑︁
𝑘=1

𝜋 (𝑑 | 𝑦1:𝑘−1)
(
𝜃𝑘𝜌𝑑 −

𝐾∑︁
𝑥=𝑘

𝜃𝑥𝜌𝑦𝑥

)]
.

(1)

The PL-Rank-2 algorithm [18] can approximate the gradient based
on𝑁 sampled rankings for𝐷 items and a ranking length of𝐾 with a
computational complexity of: O(𝑁𝐷𝐾). Table 1 compares the theo-
retical properties of PL-Rank with other LTR methods. Importantly,
PL-Rank is the only method that is not a pairwise method, while
also being based on the actual metric that is optimized.1 Further-
more, it shares most properties with StochasticRank: an alternative
method for approximating the policy gradient.

3 METHOD: A FASTER PL-RANK ALGORITHM
We will now introduce PL-Rank-3: an algorithm for computing
the same approximation as PL-Rank-2 but with a significantly bet-
ter computational complexity. Algorithm 1 displays PL-Rank-3 in
pseudo-code, we will now show that it produces the same approxi-
mation as PL-Rank-2 (cf. Algorithm 1 in [18]).

1We define a pairwise method as any method that uses an iteration over item pairs
in their algorithm. Thus under our definition methods like ApproxNDCG – that
approximates the ranks of items – and SoftRank – that approximates ranking via
a distribution over ranks per item – are considered pairwise methods because they
iterate over all possible item pairs to compute their approximations and gradients.

Algorithm 1 PL-Rank-3 Gradient Estimation
1: Input: items: D; Relevances: 𝜌 ; Metric weights: 𝜃 ;

Score function: 𝑓 ; Number of samples: 𝑁 .
2: {𝑦 (1) , 𝑦 (2) , . . . , 𝑦 (𝑁 ) } ← Gumbel_Sample(𝑁,𝑚)
3: Grad← 0 // initialize zero gradient per item
4: 𝑆 ← ∑

𝑑∈D 𝑒
𝑓 (𝑑 ) // initialize PL denominator

5: for 𝑖 ∈ [1, 2, . . . , 𝑁 ] do
6: 𝑆 ′ ← 𝑆 // copy initial PL denominator
7: 𝑃𝑅𝐾+1 ← 0 // zero value for easy computation
8: for 𝑘 ∈ [𝐾,𝐾 − 1, . . . , 1] do
9: 𝑃𝑅𝑘 ← 𝑃𝑅𝑘+1 + 𝜃𝑘𝜌𝑦 (𝑖 )

𝑘

// pre-compute all placement rewards

10: (𝑅𝐼0, 𝐷𝑅0) ← (0, 0) // zero values for easy computation
11: for 𝑘 ∈ [1, 2, . . . , 𝐾] do
12: 𝑅𝐼𝑘 ← 𝑅𝐼𝑘−1 + 𝑃𝑅𝑘/𝑆 // pre-compute all risks
13: 𝐷𝑅𝑘 ← 𝐷𝑅𝑘−1 + 𝜃𝑘/𝑆 // pre-compute all direct rewards

14: 𝑆 ′ ← 𝑆 ′ − 𝑒 𝑓 (𝑦
(𝑖 )
𝑘
) // renormalize denominator

15: for 𝑑 ∈ D do
16: 𝑟 ← min(rank(𝑑,𝑦), 𝐾) // index of the pre-computed values
17: Grad(𝑑) ← Grad(𝑑) + 1

𝑁
(𝑃𝑅𝑟+1 + 𝑒 𝑓 (𝑑 ) (𝜌𝑑𝐷𝑅𝑟 − 𝑅𝐼𝑟 ))

18: return Grad

To start, we define 𝑃𝑅𝑦,𝑖 as the placement reward, the reward
following the item placed at rank 𝑖 in ranking 𝑦:

𝑃𝑅𝑦,𝑖 =

min(𝑖,𝐾 )∑︁
𝑘=𝑖

𝜃𝑘𝜌𝑦𝑘 , 𝑃𝑅𝑦,𝑑 = 𝑃𝑅𝑦,𝑟𝑎𝑛𝑘 (𝑑,𝑦)+1 . (2)

Importantly, all 𝑃𝑅𝑦,𝑖 values for a ranking can be computed in
𝐾 steps (Line 9). Next, we point out that a summation over item
placement probabilities similar to Eq. 1 can be formulated as:

rank(𝑑,𝑦)∑︁
𝑘=1

𝜋 (𝑑 | 𝑦1:𝑘−1) = 𝑒 𝑓 (𝑑 )
©­«
rank(𝑑,𝑦)∑︁
𝑘=1

1∑
𝑑 ′∈𝐷\𝑦1:𝑘−1 𝑒

𝑓 (𝑑 ′ )
ª®¬. (3)
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Figure 1: Mean number of minutes required to complete one training epoch as 𝐾 varies on three datasets.

Table 2: Mean number of minutes taken to complete one
epoch with various methods, ranking length/cutoff 𝐾 and
number of samples 𝑁 on three datasets. Bold numbers indi-
cate the minimal time per 𝑁 and 𝐾 values on each dataset.

method 𝑁 𝐾 = 5 𝐾 = 10 𝐾 = 25 𝐾 = 50 𝐾 = 100

Ya
ho

o!

Stoc.Rank 100 0.52 0.80 1.64 2.58 3.01
1000 3.38 6.18 15.41 26.17 31.03

PL-Rank-2 100 0.43 0.58 0.96 1.35 1.50
1000 2.41 4.13 8.96 13.30 15.19

PL-Rank-3 100 0.33 0.34 0.38 0.40 0.40
1000 1.33 1.53 1.92 2.18 2.19

M
SL

R

Stoc.Rank 100 1.55 2.53 6.01 13.23 31.12
1000 14.15 25.46 65.25 150.00 353.01

PL-Rank-2 100 1.19 1.75 4.04 8.36 15.71
1000 10.34 18.91 46.27 94.81 185.42

PL-Rank-3 100 0.74 0.77 0.86 1.00 1.20
1000 4.77 5.09 5.93 7.31 9.37

Is
te
lla

Stoc.Rank 100 2.79 4.61 10.75 22.25 51.94
1000 27.34 49.07 116.73 240.40 531.09

PL-Rank-2 100 1.96 2.87 6.72 13.25 27.07
1000 18.49 30.37 74.09 142.55 278.01

PL-Rank-3 100 1.24 1.26 1.34 1.46 1.72
1000 9.93 10.14 10.87 12.20 14.75

Using this insight, we define 𝑅𝐼𝑦,𝑖 to later compute the risk imposed
by items with a non-zero placement probability at rank 𝑖 in 𝑦:

𝑅𝐼𝑦,𝑖 =

min(𝑖,𝐾 )∑︁
𝑘=1

𝑃𝑅𝑦,𝑘∑
𝑑 ′∈𝐷\𝑦1:𝑘−1 𝑒

𝑓 (𝑑 ′ ) , 𝑅𝐼𝑦,𝑑 = 𝑅𝐼𝑦,rank(𝑑,𝑦) . (4)

Similarly, we define 𝐷𝑅𝑦,𝑖 to compute the expected direct reward:

𝐷𝑅𝑦,𝑖 =

min(𝑖,𝐾 )∑︁
𝑘=1

𝜃𝑘∑
𝑑 ′∈𝐷\𝑦1:𝑘−1 𝑒

𝑓 (𝑑 ′ ) , 𝐷𝑅𝑦,𝑑 = 𝐷𝑅𝑦,rank(𝑑,𝑦) . (5)

Crucial is that all 𝑅𝐼𝑦,𝑖 and 𝐷𝑅𝑦,𝑖 values can also be computed in 𝐾
steps (Line 12 & 13). With these newly defined variables, we can
reformulate Eq. 1 without any summation over 𝐾 :

𝛿R(𝑞)
𝛿 𝑓 (𝑑) = E𝑦

[
𝑃𝑅𝑦,𝑑 + 𝑒 𝑓 (𝑑 )

(
𝜌𝑑𝐷𝑅𝑦,𝑑 − 𝑅𝐼𝑦,𝑑

) ]
. (6)

Accordingly, Algorithm 1 approximates the gradient using:

𝛿R(𝑞)
𝛿 𝑓 (𝑑) ≈

1
𝑁

𝑁∑︁
𝑖=1

(
𝑃𝑅𝑦 (𝑖 ) ,𝑑 + 𝑒

𝑓 (𝑑 )
(
𝜌𝑑𝐷𝑅𝑦 (𝑖 ) ,𝑑 − 𝑅𝐼𝑦 (𝑖 ) ,𝑑

))
. (7)

PL-Rank-3 computes the 𝑃𝑅, 𝑅𝐼 and 𝐷𝑅 values in 𝐾 steps and
then reuses them for each of the 𝐷 items, resulting in a compu-
tational complexity of O(𝑁 (𝐷 + 𝐾)) given 𝑁 sampled rankings.
However, when we consider that sampling a ranking relies on (par-
tial) sorting, the full complexity of applying PL-Rank-3 becomes
O(𝑁 (𝐷 + 𝐾 log(𝐷)).

Table 1 reveals that - to the best of our knowledge - PL-Rank-
3 has the best computational complexity of all metric-based LTR
methods. Moreover, because its computational complexity is limited
by the underlying sorting procedure, we posit that PL-Rank-3 has
reached the minimum order of computational complexity that is
possible for a LTRmethod that is based on the full-ranking behavior
of the model it optimizes.

4 EXPERIMENTAL SETUP
We experimentally evaluate how the improvements in computa-
tional complexity translate to improvements in practical costs. Our
experimental runs optimize the 𝐷𝐶𝐺@𝐾 of neural ranking mod-
els on the Yahoo! Webscope-Set1 [6], MSLR-Web30k [20] and Is-
tella [7] datasets. The neural models have two-hidden layers of
32 sigmoid activation nodes, backpropagation via standard gra-
dient descent with a learning rate of 0.01 was applied using Ten-
sorflow [1]. We compare our PL-Rank-3 algorithm, with PL-Rank-
2 [18] and StochasticRank [23]. StochasticRank was chosen as a
baseline because it shares many properties with PL-Rank (see Ta-
ble 1) yet was not compared with PL-Rank in previous work [18].
Our StochasticRank implementation uses the Gumbel distribution
as stochastic noise instead of the normal distribution of the orig-
inal algorithm [23], this makes the method applicable and effec-
tive to optimize a PL model. We reimplemented the PL-Rank and
StochasticRank algorithms in Numpy [12] and performed all our
experiments on AMD EPYC™ 7H12 CPUs.2 The ranking length-
/metric cutoff was varied: 𝐾 ∈ {5, 10, 25, 50, 100} and number of
sampled rankings: 𝑁 ∈ {100, 1000}, to measure their impact on
computational costs. Performance was measured over 200 minutes

2https://www.amd.com/en/products/cpu/amd-epyc-7H12
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Figure 2: NDCG@K performance of PL-Rank-2, PL-Rank-3 and StochasticRank with 𝑁 = 100 and 𝑁 = 1000 when trained up
to 200 minutes and for various 𝐾 values evaluated on the test-set of three datasets. All displayed results are averages over 30
independent runs. NDCG was normalized on dataset-level instead of query-level [9].

of training time, in addition to the average time required to com-
plete one training epoch. All reported results are averages over 30
independent runs performed under identical circumstances. We
report Normalized 𝐷𝐶𝐺@𝐾 (NDCG@K) as our ranking perfor-
mance metric computed on the held-out test-set of each dataset;
following the advice of Ferrante et al. [9], we do not use query-
normalization but dataset-normalization: we divide the 𝐷𝐶𝐺@𝐾
of a ranking model by the maximum possible 𝐷𝐶𝐺@𝐾 value on
the entire test-set of the dataset.

5 RESULTS
Figure 1 and Table 2 shows the effect of ranking length 𝐾 on the
computational costs of the LTR methods. As expected, Figure 1
reveals that PL-Rank-2 and StochasticRank are heavily affected
by increases in 𝐾 : there appears to be a clear linear trend on the
MSLR and Istella datasets. We note that many queries in the Yahoo!
dataset have less than 100 documents (𝐷 ≤ 100) which could explain
why the effect is sub-linear on that dataset. In contrast, PL-Rank-3
appears barely affected by 𝐾 on all of the datasets.

Table 2 allows us to also compare the computational costs inmore
detail. Regardless of whether 𝑁 = 100 or 𝑁 = 1000, the required

4
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times of PL-Rank-2 and StochasticRank scale close to linearly with
𝐾 , but those for PL-Rank-3 do not. For instance, on Istella with
𝑁 = 100 and 𝐾 = 5, PL-Rank-2 needs 1.96 minutes, StochasticRank
needs 2.79 and PL-Rank-3 needs 1.24 minutes, when compared to
𝐾 = 100, PL-Rank-2 needs an additional 25 minutes, StochasticRank
49 minutes more but PL-Rank-3 only requires an increase of 28
seconds. Moreover, PL-Rank-3 has the lowest computational costs
when compared to the other methods with the same 𝑁 and 𝐾
values, across all three datasets. We thus conclude that in terms
of time required to complete a single epoch, PL-Rank-3 is a clear
improvement over PL-Rank-2 and StochasticRank. Additionally, in
terms of scalability of computational costs w.r.t. 𝐾 , PL-Rank-3 is
the best choice by a considerable margin.

Now that we have established that PL-Rank-3 completes training
epochs considerably faster than the other methods, we consider
its effect on how quickly certain performance can be reached. Fig-
ure 2 show the performance of the LTR methods when optimizing
𝐷𝐶𝐺@𝐾 over 200 minutes for various 𝐾 values. In all but two sce-
narios, PL-Rank-3 provides the highest performance at all times,
where it seems tomostly depend on𝐾 whether𝑁 = 100 or𝑁 = 1000
is a better choice. In particular, when 𝐾 ∈ {5, 10} PL-Rank-3 with
𝑁 = 100 has the highest performance on MSLR and Istella and is
only outperformed by PL-Rank-3 with 𝑁 = 1000 on Yahoo! Con-
versely, when 𝐾 ∈ {50, 100}, 𝑁 = 1000 is the better choice for
PL-Rank-3 on all datasets. This suggests that gradient estimation
for larger values of 𝐾 is more prone to variance and thus requires
more samples for stable optimization. Overall, PL-Rank-2 appears
very affected by variance across datasets and 𝐾 values, we mostly
attribute this to the small number of epochs it can complete in 200
minutes. For example, on Istella with𝐾 = 100, PL-Rank-2 completes
less than eight epochs whereas PL-Rank-3 can complete 116 epochs.
Interestingly, StochasticRank with 𝑁 = 100 has stable performance
that is sometimes comparable with PL-Rank-3 with 𝑁 = 1000 on
the Yahoo! dataset. This indicates that the sample-efficiency of
StochasticRank is actually better than PL-Rank-3, however, due
to its low computational costs, PL-Rank-3 still outperforms it on
MSLR and Istella and when 𝐾 ∈ {5, 10, 20} on Yahoo! We conclude
that PL-Rank-3 provides a clear and substantial improvement over
PL-Rank-2, and in most scenarios also outperforms StochasticRank.

6 CONCLUSION
We have introduced PL-Rank-3 an LTR algorithm to estimate the
gradient of a PL ranking model with the same computational com-
plexity as the best sorting algorithms. PL-Rank-3 could enable
future metric-based LTR to be applicable to ranking lengths and
item collection sizes of much larger scales than previously feasible.

Code and data
To facilitate reproducibility, this work only made use of publicly
available data and our experimental implementation is publicly
available at https://github.com/HarrieO/2022-SIGIR-plackett-luce.
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