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ABSTRACT
Since its inception, the field of unbiased learning to rank (ULTR) has
remained very active and has seen several impactful advancements
in recent years. This tutorial provides both an introduction to the
core concepts of the field and an overview of recent advancements
in its foundations along with several applications of its methods.

The tutorial is divided into four parts: Firstly, we give an overview
of the different forms of bias that can be addressed with ULTR
methods. Secondly, we present a comprehensive discussion of the
latest estimation techniques in the ULTR field. Thirdly, we survey
published results of ULTR in real-world applications. Fourthly, we
discuss the connection between ULTR and fairness in ranking. We
end by briefly reflecting on the future of ULTR research and its
applications.

This tutorial is intended to benefit both researchers and industry
practitioners who are interested in developing new ULTR solutions
or utilizing them in real-world applications.
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1 MOTIVATION
Learning to rank (LTR) algorithms are the cornerstone of modern
search and recommender systems. Traditionally, LTR algorithms
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were based on supervised learning frommanually-graded relevance
judgments. However, obtaining relevance judgments is costly and
often not aligned with actual user preferences [5, 38]. In contrast,
click data is cheaper to collect and is generally better aligned with
user intents [16]. However, click data is usually a heavily biased
signal of user preference [1, 8, 18] which the field of unbiased
learning to rank (ULTR) aims to mitigate [23].

Previous tutorials focused on introducing the fundamentals of
the field to researchers and practitioners in the information re-
trieval and recommender system communities [2, 21, 31]. While
very relevant at the time, the field of ULTR has matured signifi-
cantly, and fundamental advancements have been made since then.
At the time of the last tutorials, the primarily studied interaction
bias was position bias [8, 18, 49]. Since then, the community has
addressed new interaction biases, including trust bias [1, 46], item
selection bias [28], contextual bias [51, 53, 57, 58], and cascading
position bias [19, 45]. For correcting biases, the method most com-
monly used was inverse propensity scoring (IPS). However, it is
now known that IPS is not effective in correcting for all forms of
interaction biases [25, 46]. Hence, several new and fundamental esti-
mation techniques have been developed to overcome the limitations
of IPS, for instance, affine-corrections [30, 46] and doubly-robust
estimation [26], which can both be seen as extensions of IPS for
ULTR. Furthermore, estimation methods that are fundamentally
different from IPS have also been proposed, such as two-tower
models [11, 53, 58] and causal-inference-based methods [33, 44, 56].
While many ULTR methods focus on mitigating bias in historic
datasets, the area of online learning to rank mitigates biases while
directly interacting with users [27, 40, 55]. A recent line of work
addresses both online and offline settings with methods that can
be applied to either setting and thereby, aims to unify the ULTR
field [29, 30].

Recently, LTR has also seen significant growth from the applica-
tion side [1, 4, 13, 51, 58], including fair LTR [42, 43, 52]. The focus
of the previous tutorials was on the fundamentals of ULTR with
a limited emphasis on practical applications. While the focus of
LTR was traditionally on relevance ranking, it is now commonly
acknowledged that optimizing for relevance alone can result in
unfairness issues [3, 41, 54]. In this regard, we believe that the
objective of a similar area, such as fair LTR, aligns with ULTR’s
mission, which is to provide fair and unbiased rankings to the user.
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To scale up to large-scale applications, fair LTR work relies on unbi-
ased LTR [39, 47, 52], and we hope that our tutorial will encourage
further exploration in this area.

Given these significant advancements in the area of ULTR and
the increased applications of its methodology, we believe it is the
right time to provide an overview of the state-of-the-art of the field.
Hereby, we aim to benefit both academic researchers and industry
practitioners who are either interested in developing new ULTR
solutions or utilizing them in their applications.

2 OBJECTIVES
The tutorial is based on the following two main objectives:

• To motivate and introduce the fundamental concepts of ULTR to
academics or practitioners who are new to the topic.

• To provide a comprehensive overview of the important recent
developments to the foundations and applications of ULTR, that
are useful to both newcomers and experts in the field.

Furthermore, we aim for the following additional objectives:

• Provide the most up-to-date explanation of the mathematical
foundations of the ULTR field, covering the different forms of
bias that can and cannot be corrected for and the latest estimation
techniques. Thereby, for researchers in the ULTR field, this should
provide them with a strong basis to perform future research.

• Present an in-depth survey of real-world applications of ULTR so
that practitioners can have a realistic expectation of the potential
impact of applying ULTR.

• Motivate and stimulate cross-disciplinary research, by enabling
researchers from other areas to understand how ULTR could be
useful for them. In particular, we will highlight the connection
with the topic of fairness in ranking.

3 RELEVANCE TO THE INFORMATION
RETRIEVAL COMMUNITY

The area of ULTR has grown significantly in the last couple of years,
with several fundamental contributions and diverse IR applications.

The earliest tutorial in the area was by Joachims and Swami-
nathan [17], where they introduced counterfactual learning in the
context of search and recommendation. Recent tutorials on counter-
factual evaluation and learning have focused mostly on bandit feed-
back data [35, 36]. In the context of recommender systems, Chen
et al. [6] introduce biases and debiasing strategies.

For LTR specifically, there have been tutorials introducing offline
ULTR [2, 21, 31] and online LTR [10]. However, to the best of our
knowledge, no existing tutorial covers the important advancements
in the ULTR field that has been made in the last three years, nor
their recent applications, including fair LTR [42, 52].

4 FORMAT AND DETAILED SCHEDULE
The tutorial will consist of three hours, excluding breaks, with the
following schedule:
Preliminaries (20 minutes) The first session focuses on the pre-
liminaries; we discuss the basics of supervised LTR and some of
the earliest works in position-bias and counterfactual LTR.

• Learning to rank basics (5 minutes): Discuss basics of super-
vised LTR by introducing pointwise, pairwise, and listwise LTR
methods and the concept of learning from user interactions.

• Position bias (5 minutes): Discuss position bias that arises
when applying traditional LTR methods on user clicks [8].

• Counterfactual LTR (10 minutes): Introduce the basics of
counterfactual LTR for learning from user feedback data with
position bias [18].

Biases (40 minutes) In this session, we cover the recent advances
in the types of interaction bias that can be tackled with ULTR
methods beyond position bias.

• Trust bias (10 minutes): We discuss trust bias, where users
are likely to click on items in top positions regardless of item
relevance because they trust the search engine [1, 46].

• Item Selection Bias (10 minutes): We discuss item selection
bias, where users can only interact with a fixed set of 𝑘 items,
and items outside the top-k position have zero chances of expo-
sure [28].

• Contextual Bias (10 minutes): We discuss contextual bias,
where the item’s click probability is affected by its surrounding
items on the display page [51, 53, 57, 58].

• Cascading Position Bias (10 minutes): Under the cascade
model [8], the position bias of an item depends not only on
the rank an item is displayed at (as many works in ULTR as-
sume [8, 18, 49]), but also on the relevance of the items the user
has inspected before [19, 45]. Thus, cascading position bias is of-
ten a more realistic assumption of user behavior, e.g., when users
tend to stop searching after finding the first relevant result [8].

Novel Estimation Methods (70 minutes) The most prevalent
estimation technique for correcting bias from user interaction data
is IPS, introduced in the seminal works by Wang et al. [48] and
Joachims et al. [18]. However, recently there have been fundamental
contributions in the ULTR field with respect to novel estimation
techniques. In this session, we will discuss the recent estimation
techniques in detail, as per the following schedule:
• Affine Correction Method (10 minutes): We discuss the affine
correction method introduced by Vardasbi et al. [46] as an exten-
sion to IPS, which they prove to be ineffective when correcting
for trust-bias.

• Doubly Robust Estimation (10 minutes): Despite its popu-
larity in the offline bandit learning literature [9, 14, 15, 34, 50],
doubly robust estimation methods for position bias correction
in LTR were only proposed recently [26]. We discuss this funda-
mental contribution to the area which overcomes some of the
theoretical and practical disadvantages of IPS [26].

• Online & Counterfactual methods (10 minutes): Online
learning methods are an alternative class of methods to counter
biases in LTR [27, 40, 55], where the user preferences are learned
in an online/interactive fashion, as opposed to purely from of-
fline data. Recently, Oosterhuis and de Rijke [30] argued that
the field of ULTR can benefit from using online learning to rank
via a novel online intervention-aware counterfactual estimator.
Online learning has also been used to collect additional data from
the logging policy to minimize the variance of the counterfactual
estimate of a new ranking policy [29].
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• Safe Counterfactual Policy Learning (10 minutes): ULTR re-
lies on exposure-based IPS, which can provide unbiased and con-
sistent estimates but often suffers from high variance. Especially
when little click data is available, this variance can cause ULTR
to learn sub-optimal ranking behavior, which can subsequently
bring significant risks of a negative user experience. Recently,
Gupta et al. [12] introduced a risk-aware ULTR method with a
novel exposure-based concept of risk regularization with strong
theoretical guarantees for safe deployment. Thereby, it averts the
risk of a learned policy being worse than the production ranking
system.

• Marginalized propensities (10minutes): IPS-based estimators
rely heavily on the full-support assumption for being unbiased,
i.e., the logging policy is expected to have non-zero probability
over all actions assumed under the new policy [20]. This assump-
tion can be restrictive in a setting where the action space is large,
as is typical in many real-world applications. To deal with large-
action space, Saito and Joachims [37] introduced the marginal
importance sampling method, which leverages so-called action
embeddings to generalize to a large action space.

• Two-towerModels (10minutes): So far, the focus of ULTR was
primarily on identifying and developing novel bias correction
methods, with limited focus on model design. Recently, with
the introduction of two-tower networks, this trend has been
slowly changing [11, 53, 58]. We discuss the two-tower family of
correction methods.

• Non-propensity based methods (10 minutes): The primary
estimation techniques for bias correction in ULTR are based on
IPS [1, 18, 24, 46, 48]. Despite its advantages, IPS often suffers
from high-variance [26]. Recently, the field of ULTR has pro-
gressed from relying primarily on IPS to other non-IPS-based
bias correction techniques, such as causal-inference-based meth-
ods like Heckerman’s method [32] and the causal likelihood
decomposition method [56].

Survey Applications (20minutes)A significant number of works
apply ULTR methods in real-world settings. We discuss the differ-
ent settings explored by existing work, the practical changes they
require, and the reported performance impact. A brief overview of
the settings that will be covered:
• Top-K ranking: Application of ULTR in top-k rankings [1, 58].
• Feeds recommendation: ULTR for product feeds recommen-
dation, with user interactions logged from a 2D grid-based user
interface [51, 58].

• Job recommendation: Job recommendations using ULTR [7].
• Fair LTR: Fair policy learning for article recommendation [43].
From Unbiased to Fair LTR (20 minutes) Traditionally, fair LTR
has relied on manual relevance judgments for learning fair ranking
policies [3, 41]. Similar to the arguments in favor of click-based
learning for relevance rankings, fair LTR needs to adopt click data
for its widespread application. In this part of the tutorial, we discuss
applications of ULTR for fair policy learning [22, 52].
Conclusion and Future Work (10 minutes) We close by sum-
marizing the main points discussed in the tutorial, in addition, we
also discuss some important limitations of the existing overarching
counterfactual approach in the ULTR field [25] and some promising
avenues for future research.

5 SUPPLIED MATERIAL
The tutorial slides along with an annotated bibliographic com-
pilation of references, open reference code from related work,
and a public video recording of the presentation are available at:
https://sites.google.com/view/sigir-2023-tutorial-ultr.
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