
A Deep Generative Recommendation Method
for Unbiased Learning from Implicit Feedback

Shashank Gupta

University of Amsterdam

Amsterdam, The Netherlands

s.gupta2@uva.nl

Harrie Oosterhuis

Radboud Universiteit

Nijmegen, The Netherlands

harrie.oosterhuis@ru.nl

Maarten de Rijke

University of Amsterdam

Amsterdam, The Netherlands

m.derijke@uva.nl

Abstract
Variational autoencoders (VAEs) are the state-of-the-art model for

recommendation with implicit feedback signals. Unfortunately, im-

plicit feedback suffers from selection bias, e.g., popularity bias, po-

sition bias, etc., and as a result, training from such signals produces

biased recommendation models. Existing methods for debiasing

the learning process have not been applied in a generative setting.

We address this gap by introducing an inverse propensity scor-

ing (IPS) based method for training VAEs from implicit feedback

data in an unbiased way. Our IPS-based estimator for the VAE train-

ing objective, VAE-IPS, is provably unbiased w.r.t. selection bias.

Our experimental results show that the proposed VAE-IPS model

reaches significantly higher performance than existing baselines.

Our contributions enable practitioners to combine state-of-the-art

VAE recommendation techniques with the advantages of bias miti-

gation for implicit feedback.
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1 Introduction
Recommender systems rely on user feedback signals to infer user

preferences [14, 39]. User feedback can be classified into explicit and
implicit signals. Ratings are a prime example of explicit feedback

signals, which can be interpreted as the users’ preference over

items [29]. However, user ratings are sparse in nature, which makes

learning from them difficult [2]. Implicit feedback signals, such as

clicks, purchases, or views, are abundantly present in the form of

interactions, enabling the learning of user preferences on a large

scale [16, 17].
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Despite the advantages of learning from implicit feedback data,

such data suffers from various forms of bias, and consequently,

it generally does not reflect the true user preferences but is a bi-
ased indicator of it [17, 18, 25, 28]. Examples include (i) popularity

bias [2, 29, 37], where some items get more clicks due to their pop-

ularity on the platform; (ii) positivity bias [15, 29], where users are

more likely to provide ratings for items they would rate highly; and

(iii) position bias [5, 43], where users tend to click items ranked at a

higher position of the result page. To mitigate the negative effects of

selection bias, prior work has proposed the usage of inverse propen-

sity scoring (IPS), a counterfactual estimation technique [35]. IPS

counteracts the effect of selection bias by reweighting datapoints

inversely to their probability of being observed. Recently, the IPS

approach has been extended to optimize matrix factorization (MF)

models from implicit feedback [34]. While MF methods [13, 14] and

more recent neural MF-based methods [12, 46] have a long tradition

in the recommendation field, the state-of-the-art methods for learn-

ing from implicit feedback data use variational autoencoders (VAEs)

instead [21, 36, 41]. VAE-based methods perform well in the low-

data regime, when only a few interactions are available for most

users [6, 21]. Despite the importance of bias mitigation and the

strong performance of VAEs for recommendation from implicit

feedback, existing work has overlooked the issue of bias in a gen-

erative setting [20, 34, 35]. To the best of our knowledge, previous

work has not considered state-of-the-art debiasing combined with

VAEs, despite the obvious potential for improved performance.

We address this gap by introducing VAE-IPS: an IPS debiasing

method for VAE optimization from implicit feedback. We start by

introducing an ideal generative objective for training with implicit

feedback data. We then show that naively ignoring selection bias

during learning leads to the optimization of a biased estimate of the

ideal generative objective. In contrast, we propose VAE-IPS, which

uses IPS, and prove that it unbiasedly optimizes the ideal gener-

ative objective in expectation. Our experiments show that VAE-

IPS reaches higher performance than existing debiasing methods

and VAE without debiasing. Thus, VAE-IPS successfully integrates

state-of-the-art VAE recommendation models with the advantages

of debiasing implicit feedback.

2 Related Work
Collaborative filtering (CF) is often approached as a matrix com-

pletion problem. A general problem with recommendation data is

that it is missing-not-at-random [22]. Missing entries should not be

treated as negative feedback because their absence is often not due

to a lack of preference. Training standard CF-basedmethods on such

biased data leads to suboptimal learning and evaluation [23, 24]. A

common technique to learn and evaluate in an unbiased manner
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is based on IPS. It has been applied in multiple feedback settings:

(i) explicit CF [15, 35], (ii) pointwise implicit [34], and (iii) pairwise

implicit [32]. In this work, we extend the application of debiasing

methods to deep generative models.

Latent factor models are a popular choice for training recom-

mender systems [3, 8, 30, 45], but they are limited to linear models.

Alternatively, deep neural networks are also used to model recom-

mendation problems [12, 21, 46]. In particular, VAE-based models

have strong and robust CF performance [6, 21]. The BiVAE model

models the dyadic nature of user-item interaction data [41]. BiVAE

models the distribution of user-item scores as a Bernoulli distri-

bution, instead of a multinomial distribution over all items for a

given user [6, 21]. Our work builds on the BiVAE framework by

contributing an unbiased generative model of user-item relevance.

3 Background
Selection bias in click feedback. Let 𝑟𝑢,𝑖 be an indicator variable

for the true user-item relevance, and let 𝑐𝑢,𝑖 be a binary click in-

dicator variable, indicating whether user 𝑢 clicked item 𝑖 . Lastly,

𝑜𝑢,𝑖 denotes the observation variable, indicating whether user 𝑢 ob-

served item 𝑖 . We assume that interaction behavior follows a simple

examination model, where the click probability is a product of the

probability of observance and that of relevance [4, 27, 32, 34, 42]:

𝑝 (𝑐𝑢,𝑖 = 1) = 𝑝 (𝑜𝑢,𝑖 = 1) · 𝑝 (𝑟𝑢,𝑖 = 1) = 𝜌𝑢,𝑖 · 𝛾𝑢,𝑖 , (1)

where 𝜌𝑢,𝑖 and 𝛾𝑢,𝑖 are the observation and relevance probability,

respectively. Intuitively, the click model implies that clicks only

occur on items that are relevant to a user and observed by them.

Variational autoencoders for click feedback. The goal of a

VAE is to model the generative distribution 𝑝 (𝑐𝑢𝑖 | 𝑧𝑢 , 𝑧𝑖 ) [41],
where 𝑐𝑢𝑖 is the click signal, and 𝑧𝑢 , 𝑧𝑖 are 𝑘-dimensional latent

variables for the corresponding user-item pair. Typically, we are

interested in the posterior distribution 𝑝 (𝑧𝑢 , 𝑧𝑖 | 𝑟𝑢𝑖 ), which can be

used for Bayesian inference post learning. We follow the recently

proposed VAEmodel BiVAE, whichmodels the pointwise generative

distribution of the interaction signal.

Next, we define the ideal generative objective for user-item rele-

vance following the BiVAE [41] framework. The generative story

for user-item relevance is defined as follows:

• for each user 𝑢 in the dataset, draw a latent vector 𝑧𝑢 ∼ N(0, 𝐼𝑘 );
• for each item 𝑖 in the dataset, draw a latent vector 𝑧𝑖 ∼ N(0, 𝐼𝑘 );
• for each user-item pair (𝑢, 𝑖) in the dataset, the relevance score

is defined as follows: 𝑠𝑢,𝑖 = 𝜎 (𝑧𝑇𝑢 𝑧𝑖 ), where the function 𝜎 is the

sigmoid function (𝜎 (𝑥) = 1

1+𝑒−𝑥 ); and
• for each user-item pair (𝑢, 𝑖), draw the relevance variable 𝑟𝑢,𝑖
from a Bernoulli distribution as follows: 𝑟𝑢,𝑖 ∼ Bern(𝑠𝑢,𝑖 ).

The log-likelihood for the relevance as defined previously (Eq. 1)

can be expressed as:

𝐿rel =
1

𝑁

∑︁
(𝑢,𝑖 )

𝐿rel𝑢,𝑖 , 𝐿rel𝑢,𝑖 = log𝑝 (𝑟𝑢,𝑖 ), (2)

where 𝑁 is the total number of interactions in the dataset, and

𝐿rel
𝑢,𝑖

is the log-likelihood for the single (𝑢, 𝑖) pair. Henceforth, the
equations are defined for a single (𝑢, 𝑖) interaction. For defining the
ideal relevance generative objective, let the posterior for the user-
item latent variables (𝑧𝑢 , 𝑧𝑖 ) (whichwe denote as 𝑧𝑢,𝑖 going forward)

be 𝑞𝜙 (𝑧𝑢,𝑖 ) (with 𝜙 as parameters of the posterior network), and

let the conditional likelihood distribution for relevance be 𝑝𝜃 (𝑟𝑢,𝑖 |
𝑧𝑢,𝑖 ) (with 𝜃 as parameters of the conditional likelihood’s network).

Then, the likelihood in Eq. 2 is defined as:

𝐿rel𝑢,𝑖 = log

∫
𝑝𝜃 (𝑟𝑢,𝑖 , 𝑧𝑢,𝑖 )d𝑧𝑢,𝑖

= log

∫
𝑝𝜃 (𝑟𝑢,𝑖 , 𝑧𝑢,𝑖 )

𝑞𝜙 (𝑧𝑢,𝑖 )
𝑞𝜙 (𝑧𝑢,𝑖 )

d𝑧𝑢,𝑖 (3)

= log E𝑞𝜙 (𝑧𝑢,𝑖 )

[
𝑝𝜃 (𝑟𝑢,𝑖 |𝑧𝑢,𝑖 )𝑝 (𝑧𝑢,𝑖 )

𝑞𝜙 (𝑧𝑢,𝑖 )

]
.

Next, we define 𝐿ideal
𝑢,𝑖

as the following lower-bound of the log-

likelihood:

𝐿rel𝑢,𝑖 ≥ E𝑞𝜙 (𝑧𝑢,𝑖 )

[
log

𝑝𝜃 (𝑟𝑢,𝑖 |𝑧𝑢,𝑖 )𝑝 (𝑧𝑢,𝑖 )
𝑞𝜙 (𝑧𝑢,𝑖 )

]
(4)

= E𝑞𝜙 (𝑧𝑢,𝑖 )
[
log𝑝𝜃 (𝑟𝑢,𝑖 |𝑧𝑢,𝑖 )

]︸                             ︷︷                             ︸
Conditional likelihood

−𝐷

(
𝑞𝜙 (𝑧𝑢,𝑖 )

𝑝 (𝑧𝑢,𝑖 ))︸                     ︷︷                     ︸
KLD-regularizer

= 𝐿ideal𝑢,𝑖 ,

where we define 𝐿ideal
𝑢,𝑖

as this lower-bound of the log-likelihood,

also known as the evidence lower bound objective (ELBO) in the

autoencoder literature [19, 41]. This is the ideal distribution, since
the ELBO is the quantity that is optimized in VAEs instead of the log-

likelihood (𝐿rel
𝑢,𝑖
) [19]. The first term is the conditional-likelihood,

and the second term is the KL-divergence between the posterior

and the prior (𝑝 (𝑧𝑢,𝑖 )), which acts as a regularizer. In general, the

following inequality holds: 𝐿rel
𝑢,𝑖

≥ 𝐿ideal
𝑢,𝑖

. We assume that relevance

is a binary random variable (Bernoulli distributed) for implicit

feedback data (𝑟𝑢𝑖 ∈ [0, 1]), plugging it into Eq. 4, we obtain:

𝑝𝜃 (𝑟𝑢,𝑖 |𝑧𝑢,𝑖 ) = (𝜋𝜃 (𝑧𝑢,𝑖 ))𝑟𝑢𝑖 (1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))1−𝑟𝑢,𝑖 , (5)

where 𝜋𝜃 (𝑧𝑢,𝑖 ) is the probability of relevance for the (𝑢, 𝑖) pair.
Then

𝐿ideal𝑢,𝑖 = E𝑞𝜙 (𝑧𝑢,𝑖 )
[
𝑟𝑢𝑖 log(𝜋𝜃 (𝑧𝑢,𝑖 )) + (1 − 𝑟𝑢,𝑖 ) log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))

]
− 𝐷

(
𝑞𝜙 (𝑧𝑢,𝑖 )∥𝑝 (𝑧𝑢,𝑖 )

)
. (6)

The first part of the objective is similar to the familiar cross-entropy

loss used with binary MF [14, 31], where in the VAE case, the latent

embeddings are sampled from a distribution, as opposed to being

deterministic in case of MF. The second part of the loss is the KL-

divergence between the posterior 𝑞𝜙 (𝑧𝑢,𝑖 ) and a simple normal

distribution based prior 𝑝 (𝑧𝑢,𝑖 ), which acts as a regularizer during

the training procedure [19, 41].

4 Method: VAE-IPS Estimator
In this section, we introduce the naive click-based estimator, fol-

lowed by a discussion of its bias, and finally we introduce our

proposed estimator, which is unbiased in expectation.

Naively taking the existing loss (Eq. 4) and replacing relevance

with clicks, results in the following biased estimate of the loss

function:

𝐿click𝑢,𝑖 = E𝑞𝜙

[
𝑐𝑢𝑖 log(𝜋𝜃 (𝑧𝑢,𝑖 )) + (1 − 𝑐𝑢,𝑖 ) log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))

]
− 𝐷

(
𝑞𝜙 (𝑧𝑢,𝑖 )∥𝑝 (𝑧𝑢,𝑖 )

)
.

(7)
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In other words, the click-based objective function 𝐿click
𝑢,𝑖

is simply

the ideal objective function (Eq. 4), where relevance 𝑟𝑢,𝑖 has been

subsituted by the click signal 𝑐𝑢,𝑖 . To prove that this is a biased es-

timator of the ideal objective, we apply the click model assumption

and derive the expected value of this estimator with respect to the

observation variable 𝑜𝑢,𝑖 , i.e., we consider E𝑜 [𝐿click𝑢,𝑖
]:

E𝑜 [𝐿click𝑢,𝑖 ] + 𝐷 (𝑞𝜙 (𝑧𝑢,𝑖 )∥𝑝 (𝑧𝑢,𝑖 ))
= E𝑜,𝑞𝜙

[
𝑐𝑢𝑖 log(𝜋𝜃 (𝑧𝑢,𝑖 )) + (1 − 𝑐𝑢,𝑖 ) log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))

]
(8)

= E𝑞𝜙

[
E𝑜 [𝑐𝑢,𝑖 ] log(𝜋𝜃 (𝑧𝑢,𝑖 )) + (1 −E𝑜 [𝑐𝑢,𝑖 ]) log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))

]
= E𝑞𝜙

[
(𝜌𝑢,𝑖𝑟𝑢,𝑖 ) log(𝜋𝜃 (𝑧𝑢,𝑖 )) + (1 − 𝜌𝑢,𝑖𝑟𝑢,𝑖 ) log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))

]
.

Clearly, this is a biased estimate of the ideal loss (Eq. 4), where the

propensity-term 𝜌𝑢,𝑖 is a confounding variable. We can express the

exact bias by the following difference:

E𝑜 [𝐿naive𝑢,𝑖 ] − 𝐿ideal𝑢,𝑖

= E𝑞𝜙

[
(1 − 𝜌𝑢,𝑖 )𝑟𝑢,𝑖 log(𝜋𝜃 (𝑧𝑢,𝑖 ))+

(1 − 𝜌𝑢,𝑖 )𝑟𝑢,𝑖 log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))
]

= E𝑞𝜙

[
(𝜌𝑢,𝑖 − 1)𝑟𝑢,𝑖 log

(
𝜋𝜃 (𝑧𝑢,𝑖 )

1 − 𝜋𝜃 (𝑧𝑢,𝑖 )

)]
.

(9)

From Eq. 9 it is clear that the click-based estimator will be unbiased

only if 𝜌𝑢,𝑖 = 1, for all (𝑢, 𝑖) pairs, which is clearly an unfeasible

condition with the prevalence of selection bias in interaction data.

4.1 Proposed unbiased generative estimator
We propose an unbiased generative estimator, in a similar vain as

existing IPS corrections for position bias [43], trust-bias [1], and

popularity and positivity-bias [15]. The IPS-corrected unbiased

estimate of the true generative objective is defined as follows:

𝐿
ips
𝑢,𝑖

= E𝑞𝜙

[
𝑐𝑢,𝑖

𝜌𝑢,𝑖
log(𝜋𝜃 (𝑧𝑢,𝑖 )) +

(
1 −

𝑐𝑢,𝑖

𝜌𝑢,𝑖

)
log(1 − (𝜋𝜃 (𝑧𝑢,𝑖 )))

]
− 𝐷

(
𝑞𝜙 (𝑧𝑢,𝑖 )∥𝑝 (𝑧𝑢,𝑖 )

)
. (10)

This estimator is an unbiased estimate of the true relevance based

objective (Eq. 4). To prove this, we derive the expected value of the

estimator with respect to the observation variable:

E𝑜

[
𝐿
ips
𝑢,𝑖

]
+ 𝐷

(
𝑞𝜙 (𝑧𝑢,𝑖 )∥𝑝 (𝑧𝑢,𝑖 )

)
= E𝑜,𝑞𝜙

[ 𝑐𝑢𝑖
𝜌𝑢,𝑖

log(𝜋𝜃 (𝑧𝑢,𝑖 )) +
(
1 − 𝑐𝑢𝑖

𝜌𝑢,𝑖

)
log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))

]
= E𝑞𝜙

[
E𝑜

[ 𝑐𝑢𝑖
𝜌𝑢,𝑖

]
log(𝜋𝜃 (𝑧𝑢,𝑖 )) (11)

+
(
1 −E𝑜

[ 𝑐𝑢𝑖
𝜌𝑢,𝑖

] )
log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))

]
= E𝑞𝜙

[
𝑟𝑢,𝑖 log(𝜋𝜃 (𝑧𝑢,𝑖 )) + (1 − 𝑟𝑢,𝑖 ) log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 ))

]
.

Thus, we prove that in expectation𝐿
ips
𝑢,𝑖

is equal to the ideal relevance-

based objective from Eq. 4, and therefore, our VAE-IPS estimator is

provenly unbiased.

4.2 Variance of the novel VAE-IPS estimator
Theorem 4.1. The variance of the estimator 𝐿ips

𝑢,𝑖
, given the propen-

sity 𝜌𝑢,𝑖 , click 𝑐𝑢,𝑖 , and relevance 𝑟𝑢,𝑖 , can be computed as:

Var (𝐿ips
𝑢,𝑖

) = 𝑟𝑢,𝑖

(
1

𝜌𝑢,𝑖
− 1

)
E𝑞𝜙

[
(log(𝜋𝜃 (𝑧𝑢,𝑖 )) −

log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 )))2
]
.

(12)

Proof. We need to estimate the following quantity:

Var (𝐿ips
𝑢,𝑖

) = E𝑞𝜙

[
E𝑜 [(𝐿ips𝑢,𝑖

)2]︸        ︷︷        ︸
(1)

−E𝑜 [𝐿ips𝑢,𝑖
]2︸      ︷︷      ︸

(2)

]
. (13)

To keep our notation concise, we will use 𝛿1
𝑢,𝑖

= log(𝜋𝜃 (𝑧𝑢,𝑖 )) and
𝛿0
𝑢,𝑖

= log(1 − 𝜋𝜃 (𝑧𝑢,𝑖 )). We start by expanding the first part of

Eq. 13:

E𝑜 [(𝐿ips𝑢,𝑖
)2] = E𝑜

[( 𝑐𝑢𝑖
𝜌𝑢,𝑖

𝛿1𝑢,𝑖 + (1 − 𝑐𝑢𝑖

𝜌𝑢,𝑖
)𝛿0𝑢,𝑖

)
2]

= E𝑜

[ 𝑐𝑢𝑖
𝜌2
𝑢,𝑖

(𝛿1𝑢,𝑖 )
2 + (1 − 𝑐𝑢𝑖

𝜌𝑢,𝑖
)2 (𝛿0𝑢,𝑖 )

2

+ 2(1 − 𝑐𝑢𝑖

𝜌𝑢,𝑖
) 𝑐𝑢𝑖
𝜌𝑢,𝑖

𝛿0𝑢,𝑖𝛿
1

𝑢,𝑖

]
=

𝑟𝑢,𝑖

𝜌𝑢,𝑖
(𝛿1𝑢,𝑖 )

2 +
(
1 − 2𝑟𝑢,𝑖 +

𝑟𝑢,𝑖

𝜌𝑢,𝑖

)
(𝛿0𝑢,𝑖 )

2

+ 2

(
𝑟𝑢,𝑖 −

𝑟𝑢,𝑖

𝜌𝑢,𝑖

)
𝛿0𝑢,𝑖𝛿

1

𝑢,𝑖 ,

(14)

where in the second step, wemake use of the identity 𝑐2
𝑢,𝑖

= 𝑐𝑢,𝑖 , and

going from the second to third step, we evaluate the expectation

term inside. Next, we expand the second part of the Eq. 13 by

resolving the inner expectation with the use of Eq. 11:

E𝑜 [𝐿ips𝑢,𝑖
]2 =

(
𝑟𝑢,𝑖𝛿

1

𝑢,𝑖 + (1 − 𝑟𝑢,𝑖 )𝛿0𝑢,𝑖
)
2

= 𝑟𝑢,𝑖 (𝛿1𝑢,𝑖 )
2 + (1 − 𝑟𝑢,𝑖 ) (𝛿0𝑢,𝑖 )

2,

(15)

where we also make use of the identity 𝑟2
𝑢,𝑖

= 𝑟𝑢,𝑖 , and (1 − 𝑟𝑢,𝑖 )2 =
1 − 𝑟𝑢,𝑖 . Substituting the first and the second part back to Eq. 13:

Var (𝐿ips
𝑢,𝑖

) = E𝑞𝜙

[
𝑟𝑢,𝑖

(
1

𝜌𝑢,𝑖
− 1

) (
(𝛿1𝑢,𝑖 )

2 + (𝛿0𝑢,𝑖 )
2 − 2𝛿0𝑢,𝑖𝛿

1

𝑢,𝑖

)]
= E𝑞𝜙

[
𝑟𝑢,𝑖

(
1

𝜌𝑢,𝑖
− 1

)
(𝛿1𝑢,𝑖 − 𝛿0𝑢,𝑖 )

2

]
. □

We see that the variance depends inversely on the propensity, which

suggests that items with lower propensity will have a higher vari-

ance, and vice-versa. In practice, this is not a big issue since methods

like propensity clipping can greatly reduce variance at the cost of a

small amount of bias. Eq. 16 shows how we apply this technique in

our experimental setup.

5 Experimental Setup
We assess the performance of VAE-IPS for a relevance prediction

task in semi-synthetic, real-world, and fully-synthetic setups.
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5.1 Baselines and settings
Our comparison includes the following six methods: (i) Binary Ma-
trix Factorization (MF): We use the matrix factorization model

for implicit feedback dataset from [14], where the squared loss is

replaced with the cross-entropy loss to account for the clicks being

Bernoulli distributed. (ii) Rel-MF: The binary matrix factorization

model trained with IPS weighted loss from [34]. (iii) MD-DR: A
doubly-robust variant of the IPS matrix factorization model, which

uses a control variate to reduce the variance of the IPS method [44].

(iv)MF-Dual: The dual unbiased matrix factorization model for im-

plicit feedback data. To the best of our knowledge, it is the current

state-of-the-art method for debiasing implicit feedback data [20].

(v) VAE: We use the BiVAE framework developed to model dyadic

data [41], which is more suitable for pointwise predictions. This

VAE baseline is optimized with the proposed coordinate descent

style optimization method, where the posteriors for user and items

are optimized alternately. The latent variables for this case are 𝑧𝑢
and 𝑧𝑖 , and the user-item prediction score is defined as the dot prod-

uct between the user and item latent variable, 𝜋𝜃 (𝑧𝑢,𝑖 ) = 𝑧𝑇𝑢 ·𝑧𝑖 . This
is similar to the prediction score defined in matrix factorization, the

key difference being the use of neural networks and variational in-

ference. And (vi) VAE-IPS: This is our proposed method, the BiVAE

model optimized with the unbiased VAE-IPS objective (Eq. 10). Prac-

tically, with the alternative coordinate descent optimization, we use

the IPS correction alternately for both user-based and item-based

loss functions in the BiVAE framework.

Variance reduction. The IPS estimator is known to suffer from

large variance [40], due to the use of the inverse of the probability

score, which is unbounded. We apply propensity clipping [34, 38],

which can greatly reduce variance while only introducing a small

amount of bias. Formally, we define a clipped propensity as:

𝜌
clip
𝑢,𝑖

= max

(
𝜌𝑢,𝑖 , 𝜏

)
, (16)

where 𝜏 is a hyper-parameter, which controls the trade-off between

bias and the variance. A small 𝜏 can result in high variance but little

bias, whereas a high 𝜏 can lead to little variance but high bias.

Propensity estimation. To estimate the propensity of an item,

we use its relative click frequency in the training dataset [34]. The

intuition behind training click frequency is that an item is more

likely to be exposed to a user if it has historically been clicked more

and vice-versa. Formally, we define the propensities as:

𝜌𝑢𝑖 = 𝜌𝑖 =

∑𝑈
𝑢=1 𝑐𝑢,𝑖∑𝑈

𝑢=1

∑𝐼
𝑖=1 𝑐𝑢,𝑖

, (17)

where we make the assumption that propensity scores are uniform

across all users [34].

Implementation details. The source code to reproduce the find-

ings from the paper is available at: https://github.com/shashankg7/

VAE-IPS.

5.2 Semi-synthetic experimental setup
To assess the performance of our proposed method, we use the

MovieLens-1M dataset [11]. The dataset consists of ∼6K users and

∼3,700 items, with 1 million explicit feedback ratings. To convert

an explicit feedback dataset into an implicit feedback dataset, we

consider all ratings with a value over 4 as positive interactions and

rest of the interactions as unlabelled instances.

We follow the experimental setup from [31]. To evaluate the per-

formance of the methods, we use 50% of the dataset as test set. To

simulate an unbiased test set, we re-sample 30% data from the test

set with a sampling probability as 1/𝑝𝛼
𝑖
, where 𝑝𝛼

𝑖
is an item’s nor-

malized frequency in the training dataset, and 𝛼 is used to control

the selection bias in the test set. A value of 𝛼 = 1 ensures the least

selection bias and other values simulate controlled randomization.

We use NDCG@5 and MAP@5 as evaluation metrics. For calcu-

lating the normalizing factor of the NDCG@5, we follow the advice

from [7] and base it on the entire dataset. Our evaluation metrics

follow the definitions of earlier work on Rel-MF [34].

5.3 Real-world dataset experimental setup
We also evaluate VAE-IPS on a real-world dataset, where the test

set interactions are from a truly uniform-random policy. We use

the Yahoo! R3 dataset [24], which consists of interactions from a

music recommendation service. The randomized test set ensures

that it is free from the selection bias present in the training set.

To get a validation set, we split the training set in both datasets

in accordance to a 80%/20% randomized split. We use the validation

dataset to tune the hyper-parameters for the baselines and VAE-IPS.

We use DCG@5 as the metric for hyper-parameter tuning, and

tune the hyper-parameters using the self-normalized importance

sampling (SNIPS) version of the DCG@5 metric [35].

5.4 Fully-synthetic experimental setup
We also examine a more controlled setting, where we generate a

fully-synthetic dataset according to the click-model (Eq. 1). The

synthetic data generation process samples observance and rele-

vance probabilities from beta distributions: 𝜌𝑢,𝑖 ∼ Beta(1, 50) and
𝛾𝑢,𝑖 ∼ Beta(0.5, 0.5); additionally, noise variables are sampled from

a uniform distribution with parameter 𝛽 : 𝜂𝑢,𝑖 ∼ Unif(0, 𝛽); and
clicks are Bernoulli samples from the resulting click probabilities:

𝑝 (𝑐𝑢,𝑖 = 1) = min

(
𝜌𝑢,𝑖 · 𝛾𝑢,𝑖 + 𝜂𝑢,𝑖 , 1

)
. (18)

We generate the dataset with total number of users |𝑈 | = 1000, and

total number of items |𝐼 | = 100. We randomly split the relevance 𝑅

matrix into train and test sets, and generate clicks only from the

train part of the split. To evaluate the robustness of the methods

with respect to click noise, we vary the 𝛽 parameter. For the sake

of brevity, we only compare with MF-Dual as it is found to be the

best performing baseline in the previous two settings.

6 Results and Discussion
6.1 Semi-synthetic experimental results
The results on the unbiased relevance prediction task using the

MovieLens-1M dataset are presented in Table 1. We evaluate the

performance across different values of 𝛼 , which controls the simu-

lated selection bias, i.e., under different sampling test distributions.

The VAE-IPS method consistently outperforms all methods by a

significant margin across all metrics. The results hold for different

settings of 𝛼 , indicating the robustness of VAE-IPS across different

degrees of selection bias.

Interestingly, Rel-MF and MF-DR perform worse than the vanilla

https://github.com/shashankg7/VAE-IPS
https://github.com/shashankg7/VAE-IPS
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Table 1: Performance of different methods on the unbiased
relevance prediction task on the MovieLens dataset. Signif-
icant improvements over MF-Dual are marked with † and
over VAE with ∗ (𝑝 < 0.01).

Method 𝛼 = 0.5 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0

MAP@5

MF 0.0336 0.0342 0.0343 0.0337

Rel-MF 0.0209 0.0212 0.0224 0.0239

MF-Dual 0.0489 0.0501 0.0491 0.0494

MF-DR 0.0236 0.0235 0.0239 0.0236

VAE 0.0399 0.0396 0.0399 0.0401

VAE-IPS 0.0918†∗ 0.0914†∗ 0.0917†∗ 0.0909†∗

NDCG@5

MF 0.0198 0.0202 0.0203 0.0200

Rel-MF 0.0123 0.0125 0.0134 0.0141

MF-Dual 0.0289 0.0296 0.0292 0.0290

MF-DR 0.0138 0.0138 0.0140 0.0138

VAE 0.0236 0.0237 0.0236 0.0240

VAE-IPS 0.0542†∗ 0.0536†∗ 0.0539†∗ 0.0535†∗

MFmodel across all settings of 𝛼 . We speculate that this is due to the

biased negative loss in the Rel-MF formulation, as noted in previous

work [20], and given that the MF-DR model is primarily aimed for

explicit feedback data [44], it fails to perform in a binary feedback

setting. VAE outperforms Rel-MF and MF-DR, possibly due to it

being a generative model, capable of capturing more complex pat-

terns in the dataset. Nonetheless, VAE is still clearly outperformed

by VAE-IPS by a large margin, as are the other baselines. Therefore,

we conclude that, by combining the expressiveness of a generative

model with a debiasing technique, VAE-IPS results in the highest

performance across all tested settings.

6.2 Real-world experimental results
For the experimental setup on the Yahoo! R3 dataset, the results

are presented in Table 2. Similar to the results on MovieLens-1M,

VAE-IPS outperforms all other methods by a significant margin.

It is interesting to note that vanilla MF outperforms Rel-MF

across all metrics in this dataset, even though the test-set is from a

uniform random policy. We speculate that this is due to the estima-

tion error in the propensity calculation [44]. Similar findings have

been reported in previous work [33], where MF with IPS failed to

outperform a vanilla MF method. Consistent with the results on

the MovieLens-1M, MF-Dual outperforms all MF-based baselines

and VAE without IPS. VAE-IPS clearly provides significantly higher

performance than all other tested methods. Therefore, these results

show us that, in addition to the semi-synthetic setting, the perfor-

mance advantages of VAE-IPS are clearly observable on real-world

data as well.

6.3 Fully-synthetic experimental results
To evaluate the robustness of VAE-IPS with respect to noise, we look

at our experimental results on the fully-synthetic dataset in Figure 3.

We vary the degree of noise, 𝛽 ∈ {0.1, 0.3, 0.5, 0.7}, where higher
values of 𝛽 indicate higher levels of click noise (see Eq. 18); and for

comparison, we also consider the performance of the MF-Dual, the

Table 2: Performance of different methods on a real-world
dataset (Yahoo! R3). Significant improvements over MF-Dual
are marked with † and over MF with ∗ (𝑝 < 0.01).

Metric MF Rel-MF MF-Dual MF-DR VAE VAE-IPS

MAP@5 0.0212 0.0192 0.0212 0.0086 0.0198 0.0234†∗

NDCG@5 0.0167 0.0151 0.0168 0.0068 0.0154 0.0178†∗

Table 3: Performance of the linear (MF-Dual) and our VAE-
IPS method on the fully-synthetic dataset, under varying
degrees of noise: 𝛽 ∈ {0.1, 0.3, 0.5, 0.7}.
Method Metric 𝛽 = 0.1 𝛽 = 0.3 𝛽 = 0.5 𝛽 = 0.7

MF-Dual

MAP@5 0.2238 0.2261 0.2255 0.2541

NDCG@5 0.3488 0.3517 0.3531 0.3451

VAE-IPS

MAP@5 0.2316 0.2324 0.2348 0.2584
NDCG@5 0.3615 0.3615 0.3654 0.3501

highest performing baseline method in the previous settings.

Surprisingly, the performance of both MF-Dual and VAE-IPS is

consistent across different noise values, with only small differences

in performance between lowest (𝛽 = 0.1) and highest noise level

(𝛽 = 0.7). This observation strongly indicates that they are both

very robust to the noise in recorded clicks. Similar to what we

have seen in our other experimental results, VAE-IPS has a higher

performance across all metrics and noise settings. We thus conclude

that VAE-IPS has a high robustness to noise and that it appears to

outperform MF-Dual regardless of the level of click noise.

7 Conclusion
In this paper we investigated whether state-of-the-art VAE recom-

mendation models could be combined with debiasing techniques

in the implicit feedback setting.

First, we studied the effect of bias on a naive VAE training objec-

tive based on clicks. Our analysis proved that directly optimizing

this objective leads to a biased recommendation system that unfairly

favors items that were overrepresented during data logging.

Second, we proposed VAE-IPS, a novel IPS correction for the VAE

loss, that allows for the combination of VAE recommendation mod-

els with the IPS debaising method, and which is provenly unbiased

w.r.t. selection bias in clicks. We evaluated VAE-IPS on two public

datasets across various metrics and observed that it outperforms all

our baselines across all metrics by significant margins. We believe

our contribution of VAE-IPS is important to the recommendation

systems field, because it combines the expressiveness of state-of-

the-art VAE-based recommender models with IPS debiasing, and

could lead to better performing recommender systems that are less

affected by selection bias in interaction data.

Future work could consider robust methods for propensity es-

timation for implicit feedback in recommendation: IPS-based bias

mitigation methods can be even more effective with more accurate

propensity scores. IPS-based methods are known to suffer from

the problem of high variance [9, 26], which can result in an unsafe
policy and potentially lead to a negative user experience when

deployed online. To avoid this, future work could consider adding

safety regularization to the IPS objective [10], providing theoretical
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guarantees for safe deployment. Alternatively, future research can

explore the application of other bias mitigationmethods, such as the

doubly-robust method [26, 44], to VAE recommendation models.

Acknowledgements
This research was supported by Huawei Finland and by the Hybrid

Intelligence Center, a 10-year program funded by the Dutch Min-

istry of Education, Culture and Science through the Netherlands

Organisation for Scientific Research, https://hybrid-intelligence-

centre.nl. This work used the Dutch national e-infrastructure with

the support of the SURF Cooperative using grant no. EINF-4963.

All content represents the opinion of the authors, which is not nec-

essarily shared or endorsed by their respective employers and/or

sponsors.

References
[1] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork.

2019. Addressing Trust Bias for Unbiased Learning-to-rank. In The World Wide
Web Conference. 4–14.

[2] Rocío Cañamares and Pablo Castells. 2018. Should I Follow the Crowd? A

Probabilistic Analysis of the Effectiveness of Popularity in Recommender Systems.

In The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval. 415–424.

[3] Laurent Charlin, Rajesh Ranganath, James McInerney, and David M. Blei. 2015.

Dynamic Poisson Factorization. In Proceedings of the 9th ACM Conference on
Recommender Systems. 155–162.

[4] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. 2015. Click Models for
Web Search. Morgan & Claypool Publishers.

[5] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. 2008. An Exper-

imental Comparison of Click Position-bias Models. In Proceedings of the 2008
international conference on web search and data mining. 87–94.

[6] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. 2019. Are We

really MakingMuch Progress? AWorrying Analysis of Recent Neural Recommen-

dation Approaches. In Proceedings of the 13th ACM Conference on Recommender
Systems. 101–109.

[7] Marco Ferrante, Nicola Ferro, and Norbert Fuhr. 2021. Towards Meaningful

Statements in IR Evaluation: Mapping Evaluation Measures to Interval Scales.

IEEE Access 9 (2021), 136182–136216.
[8] Prem Gopalan, Jake M. Hofman, and David M. Blei. 2015. Scalable Recommenda-

tion with Hierarchical Poisson Factorization. In Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence. 326–335.

[9] Shashank Gupta, Philipp Hager, Jin Huang, Ali Vardasbi, and Harrie Oosterhuis.

2023. Recent Advances in the Foundations and Applications of Unbiased Learning

to Rank. arXiv preprint arXiv:2305.02914 (2023).
[10] Shashank Gupta, Harrie Oosterhuis, andMaarten de Rijke. 2023. Safe Deployment

for Counterfactual Learning to Rank with Exposure-Based Risk Minimization.

arXiv preprint arXiv:2305.01522 (2023).
[11] F. Maxwell Harper and Joseph A. Konstan. 2015. The Movielens datasets: History

and Context. ACM Transactions on Interactive Intelligent Systems 5, 4 (2015), 1–19.
[12] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web. 173–182.

[13] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast

Matrix Factorization for Online Recommendation with Implicit Feedback. In

Proceedings of the 39th International ACM SIGIR conference on Research and Devel-
opment in Information Retrieval. 549–558.

[14] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for

Implicit Feedback Datasets. In Eighth IEEE International Conference on Data
Mining. IEEE, 263–272.

[15] Jin Huang, Harrie Oosterhuis, Maarten de Rijke, and Herke van Hoof. 2020.

Keeping Dataset Biases Out of the Simulation: A Debiased Simulator for Rein-

forcement Learning Based Recommender Systems. In Fourteenth ACM Conference
on Recommender Systems. 190–199.

[16] Ilija Ilievski and Sujoy Roy. 2013. Personalized News Recommendation Based

on Implicit Feedback. In Proceedings of the 2013 International News Recommender
Systems Workshop and Challenge. 10–15.

[17] Dietmar Jannach, Lukas Lerche, and Markus Zanker. 2018. Recommending Based

on Implicit Feedback. In Social Information Access. Springer, 510–569.
[18] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased

Learning-to-rank with Biased Feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining. 781–789.

[19] Diederik P. Kingma and Max Welling. 2013. Auto-encoding Variational Bayes.

arXiv preprint arXiv:1312.6114 (2013).
[20] Jae-woong Lee, Seongmin Park, and Jongwuk Lee. 2021. Dual Unbiased Recom-

mender Learning for Implicit Feedback. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1647–1651.

[21] Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.

Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018
world wide web conference. 689–698.

[22] Roderick J.A. Little and Donald B. Rubin. 2002. Statistical Analysis with Missing
Data. John Wiley & Sons.

[23] Benjamin Marlin, Richard S. Zemel, Sam Roweis, and Malcolm Slaney. 2012.

Collaborative Filtering and the Missing at Random Assumption. arXiv preprint
arXiv:1206.5267 (2012).

[24] Benjamin M. Marlin and Richard S. Zemel. 2009. Collaborative Prediction and

Ranking with Non-random Missing Data. In Proceedings of the third ACM confer-
ence on Recommender systems. 5–12.

[25] Harrie Oosterhuis. 2020. Learning from User Interactions with Rankings: A Uni-
fication of the Field. Ph. D. Dissertation. Informatics Institute, University of

Amsterdam.

[26] Harrie Oosterhuis. 2023. Doubly Robust Estimation for Correcting Position

Bias in Click Feedback for Unbiased Learning to Rank. ACM Transactions on
Information Systems 41, 3 (2023), 1–33.

[27] Harrie Oosterhuis and Maarten de Rijke. 2021. Unifying Online and Counterfac-

tual Learning to Rank: A Novel Counterfactual Estimator that Effectively Utilizes

Online Interventions. In Proceedings of the 14th ACM International Conference on
Web Search and Data Mining. 463–471.

[28] Harrie Oosterhuis, Rolf Jagerman, and Maarten de Rijke. 2020. Unbiased Learning

to Rank: Counterfactual and Online Approaches. In Companion Proceedings of
the Web Conference 2020. 299–300.

[29] Bruno Pradel, Nicolas Usunier, and Patrick Gallinari. 2012. Ranking with Non-

random Missing Ratings: Influence of Popularity and Positivity on Evaluation

Metrics. In Proceedings of the sixth ACM conference on Recommender systems.
147–154.

[30] Sanjay Purushotham, Yan Liu, and C.-C. Jay Kuo. 2012. Collaborative Topic

Regression with Social Matrix Factorization for Recommendation Systems. arXiv
preprint arXiv:1206.4684 (2012).

[31] Yuta Saito. 2020. Asymmetric Tri-training for Debiasing Missing-not-at-random

Explicit Feedback. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval. 309–318.

[32] Yuta Saito. 2020. Unbiased Pairwise Learning from Biased Implicit Feedback.

In Proceedings of the 2020 ACM SIGIR on International Conference on Theory of
Information Retrieval. 5–12.

[33] Yuta Saito and Masahiro Nomura. 2022. Towards Resolving Propensity Contra-

diction in Offline Recommender Learning. In Proceedings of the 31st International
Joint Conference on Artificial Intelligence. 2211–2217.

[34] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.

2020. Unbiased Recommender Learning from Missing-not-at-random Implicit

Feedback. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 501–509.

[35] Tobias Schnabel, Adith Swaminathan, Ashudeep Singh, Navin Chandak, and

Thorsten Joachims. 2016. Recommendations as Treatments: Debiasing Learning

and Evaluation. In International Conference on Machine Learning. PMLR, 1670–

1679.

[36] Ilya Shenbin, Anton Alekseev, Elena Tutubalina, Valentin Malykh, and Sergey I

Nikolenko. 2020. RecVAE: A New Variational Autoencoder for Top-n Recommen-

dations with Implicit Feedback. In Proceedings of the 13th International Conference
on Web Search and Data Mining. 528–536.

[37] Harald Steck. 2011. Item Popularity and Recommendation Accuracy. In Proceed-
ings of the fifth ACM conference on Recommender systems. 125–132.

[38] Alex Strehl, John Langford, Lihong Li, and Sham M. Kakade. 2010. Learning from

Logged Implicit Exploration Data. In Advances in Neural Information Processing
Systems, J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (Eds.),

Vol. 23. Curran Associates, Inc.

[39] Xiaoyuan Su and TaghiM. Khoshgoftaar. 2009. A Survey of Collaborative Filtering

Techniques. Advances in artificial intelligence 2009 (2009).
[40] Adith Swaminathan and Thorsten Joachims. 2015. Batch Learning from Logged

Bandit Feedback through Counterfactual Risk Minimization. The Journal of
Machine Learning Research 16, 1 (2015), 1731–1755.

[41] Quoc-Tuan Truong, Aghiles Salah, and Hady W. Lauw. 2021. Bilateral Varia-

tional Autoencoder for Collaborative Filtering. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining. 292–300.

[42] Ali Vardasbi, Harrie Oosterhuis, and Maarten de Rijke. 2020. When Inverse

Propensity Scoring does not Work: Affine Corrections for Unbiased Learning to

Rank. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 1475–1484.

[43] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc

Najork. 2018. Position Bias Estimation for Unbiased Learning to Rank in Personal

https://hybrid-intelligence-centre.nl
https://hybrid-intelligence-centre.nl


A Deep Generative Recommendation Method for Unbiased Learning from Implicit Feedback ICTIR ’23, July 23, 2023, Taipei, Taiwan

Search. In Proceedings of the Eleventh ACM International Conference onWeb Search
and Data Mining. 610–618.

[44] Xiaojie Wang, Rui Zhang, Yu Sun, and Jianzhong Qi. 2019. Doubly Robust Joint

Learning for Recommendation on Data Missing Not at Random. In International
Conference on Machine Learning. PMLR, 6638–6647.

[45] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. 2006. Learning

from Incomplete Ratings Using Non-negative Matrix Factorization. In Proceedings
of the 2006 SIAM international conference on data mining. SIAM, 549–553.

[46] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. 2019. Deep Learning Based

Recommender System: A Survey and New Perspectives. ACM Computing Surveys
(CSUR) 52, 1 (2019), 1–38.


	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Method: VAE-IPS Estimator
	4.1 Proposed unbiased generative estimator
	4.2 Variance of the novel VAE-IPS estimator

	5 Experimental Setup
	5.1 Baselines and settings
	5.2 Semi-synthetic experimental setup
	5.3 Real-world dataset experimental setup
	5.4 Fully-synthetic experimental setup

	6 Results and Discussion
	6.1 Semi-synthetic experimental results
	6.2 Real-world experimental results
	6.3 Fully-synthetic experimental results

	7 Conclusion
	References

