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Abstract
The traditional evaluation of information retrieval (IR) systems is
generally very costly as it requires manual relevance annotation
from human experts. Recent advancements in generative artificial
intelligence –specifically large language models (LLMs)– can gen-
erate relevance annotations at an enormous scale with relatively
small computational costs. Potentially, this could alleviate the costs
traditionally associated with IR evaluation and make it applicable to
numerous low-resource applications. However, generated relevance
annotations are not immune to (systematic) errors, and as a result,
directly using them for evaluation produces unreliable results.

In this work, we propose two methods based on prediction-
powered inference and conformal risk control that utilize computer-
generated relevance annotations to place reliable confidence in-
tervals (CIs) around IR evaluation metrics. Our proposed methods
require a small number of reliable annotations fromwhich the meth-
ods can statistically analyze the errors in the generated annotations.
Using this information, we can place CIs around evaluation metrics
with strong theoretical guarantees. Unlike existing approaches, our
conformal risk control method is specifically designed for rank-
ing metrics and can vary its CIs per query and document. Our
experimental results show that our CIs accurately capture both the
variance and bias in evaluation based on LLM annotations, better
than the typical empirical bootstrapping estimates. We hope our
contributions bring reliable evaluation to the many IR applications
where this was traditionally infeasible.

CCS Concepts
• Information systems → Evaluation of retrieval results; •
Computing methodologies→ Semi-supervised learning settings.
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1 Introduction
The evaluation of information retrieval (IR) systems is an impor-
tant and long-established part of the IR field [30, 71, 73]. The goal
of standard IR systems is to retrieve and rank documents accord-
ing to their relevance to a query and user. Accordingly, standard
IR evaluation metrics (e.g., precision, recall, discounted cumula-
tive gain (DCG), etc.) measure how relevant the top ranked items
are for a set of known queries [12, 35, 36]. Accordingly, tradi-
tional evaluation requires a dataset with examples of documents,
queries and annotations that indicate the relevance of documents
to queries [39, 40, 57, 69]. Whilst documents and queries are often
gathered by logging user interactions, relevance annotations are
traditionally created through the labour of human experts, who are
trained for the specific labelling task [6, 17, 30, 47]. Consequently,
creating a new dataset for IR evaluation purposes is generally very
costly, and as a result, no large datasets have been created for many
IR settings [19, 34, 63, 74]. Thus, for these low-resource settings
traditional evaluation is not available in practice.

Despite the large costs involved, there has been a continuous
effort, often driven by initiatives like TREC and CLEF, to create
new datasets for different IR tasks [9, 14, 31, 38, 43, 52–54, 62, 65,
67, 68, 70]. Since the foundational Cranfield collection [67], many
datasets have been created for ad-hoc retrieval [31, 38, 52, 70].
However, to match the large variety of IR-related tasks, many other
datasets were subsequently introduced, accordingly; For example,
datasets with numerical IR features for learning-to-rank [14, 53, 54],
or large collections of natural language question-answering exam-
ples such as MS MARCO [47] and BioASQ [65]. Similarly, recent
years have seen the introduction of the TREC-DL [17], BEIR [62]
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and Istella22 [20], among others [9, 68], specifically for the evalua-
tion of neural IR systems. Consequently, most of the subsequent
advancements in neural IR were only possible because of the avail-
ability of these datasets and the reliable benchmarking that they
enable [29, 45, 46, 48]. This highlights the importance and impact
of reliable evaluation on the IR field [30, 57, 69].

It is thus no surprise that potential novel data sources are re-
ceived with great excitement. In the past two years, new advance-
ments in generative artificial intelligence [18, 28, 37, 41, 51], espe-
cially the arrival of large language models (LLMs) [11, 49, 61], are
speculated to bring potentially groundbreaking sources for IR eval-
uation [15, 25]. LLMs are trained on extremely large corpora of di-
verse texts for the task of generating fluent natural language [42, 60].
Importantly, LLMs are also capable at performing numerous mis-
cellaneous tasks such as question-answering, text-summarization
and text-annotation [1, 15, 27, 61, 64]. Compared to annotation by
human experts, annotation via LLMs can be performed relatively
cheaply and at much larger scale [44, 63]. Several existing stud-
ies have already investigated the application of LLM-generated
relevance annotations to IR evaluation [15, 25, 44]. In particular,
Thomas et al. [63] found that, when applied correctly to specific
settings, LLMs can produce better labels than third-party assessors
at a fraction of the costs. Thus, there is a clear potential for IR
evaluation based on computer-generated relevance annotations.

However, a fundamental issue with evaluation based on LLMs,
or other generative models, is that they are bound to make er-
rors [8, 15, 63]. Part of these errors are coincidental, since perfect
relevance prediction is infeasible in practice, but other errors are
systematic [25]. For instance, an LLM could systematically misesti-
mate relevance in certain domains or on documents with particular
attributes [8, 63]. In turn, these errors could affect the final evalu-
ation metrics and result in incorrect assessments of performance.
Unfortunately, generative models cannot give trustworthy insight
into their own reliability [37, 51]. Thus when solely relying on
LLM-based evaluation, one cannot be certain how reliable their
conclusions are.

In this work, we investigate how computer-generated relevance
annotations can be used for reliable evaluation, by constructing
confidence intervals (CIs) around ranking metrics with them [56,
73]. Our approach requires a small number of reliable ground truth
annotations, in order to statistically analyze the distribution of er-
rors that exist in the generated annotations. Subsequently, we apply
two state-of-the-art methodologies [3, 4] with a strong theoretical
grounding to find reliable CIs. In this work, we provide two main
methodological contributions:

Our first contribution is the novel application of prediction-
powered inference (PPI) to IR evaluation [3]. PPI applies classical
methods for building CIs but builds them around the error be-
tween the predicted and true values of a metric. Thereby, somewhat-
reasonable predictions can lead to substantially smaller CIs than
classical CI around just the metric value. The limitations of PPI is
that it does not utilize the uncertainty of the generative model, and
that it only provides a CI around the final metric value.

Our second contribution addresses these limitations by propos-
ing a novel conformal risk control (CRC) approach [2, 4]. We in-
troduce a novel method to place an optimistic and a pessimistic
prediction around each generated relevance label, which follows

the confidence of the generative model. These predictions can be
propagated to form an interval around metrics on the query or
dataset level. Through CRC, our approach calibrates the intervals
to guarantee that the true value lies between them with a mini-
mum probability. In other words, our method puts lower and up-
per bounds around the relevance of each document that naturally
translate to reliable CI on query and dataset-level metrics. Thereby,
unlike PPI, our CRC approach does utilize the confidence of the
generative model and can provide CI on query-level performance.

Our results on several IR benchmarks show that both our meth-
ods provide CIs around LLM-based metric predictions that accu-
rately capture the true values, while also being significantly less
wide than those of previous CI methods [16, 73]. Moreover, unlike
other approaches [3], our CRC method can vary CIs per document,
query or collection of queries and can thus better indicate where a
generative model is more or less reliable.

To the best of our knowledge, our novel approaches are the first
that leverages computer-generated relevance annotations to pro-
duce reliable CIs for IR evaluation. We hope this contribution opens
up novel possibilities for reliable benchmarking of low-resource IR
tasks that have been traditionally infeasible.

2 Related Work
2.1 Confidence intervals for IR evaluation
Evaluation is a well-established core part of the IR field [30, 52,
67, 71, 73]. Generally, it aims to measure how well a retrieval sys-
tem can produce a list of ranked documents in response to a user
query [30, 58, 69]. The most prevalent form of IR evaluation relies
on datasets containing example queries, documents and human-
annotated relevance labels [30, 57, 67, 69]. Accordingly, there is
a long history of efforts to create such datasets in the IR commu-
nity, such as TREC [17, 31, 68, 70, 71], CLEF [52], NTCIR [38] and
many others [9, 14, 20, 43, 53, 54, 62, 65, 67]. Despite the enor-
mous importance of these datasets, they are known to have limi-
tations. For instance, expert annotators can give conflicting rele-
vance assessments, and the actual users of an IR application can
disagree with the experts as well [57]. Furthermore, the construc-
tions of these datasets is often costly which puts constraints on
their size [13, 14, 67, 70]. As a result, IR datasets can only represent
a limited slice of the queries that a real IR system receives [13, 73].

Accordingly, statistical approaches to IR evaluation have been
developed to deal with these limitations. For example, it has be-
come common practice to use significance tests to ensure that
observed differences in IR metrics are, with high probability, not
the result of random chance [26, 59, 66]. Confidence intervals (CIs)
have been used to express the uncertainty that comes from us-
ing the dataset sample of queries to estimate performance over all
queries [16, 56]. Furthermore, previous work has also applied CI for
relevance annotator disagreement [21, 33] and missing relevance
annotations [5, 72, 75]. The statistical methods used to construct CI
by previous work in IR have been based on empirical bootstrapping
techniques [22, 23, 32]. To the best of our knowledge, our work is
the first to consider PPI and CRC methods for IR evaluation [3, 4].

2



Reliable Confidence Intervals for Information Retrieval Evaluation Using Generative A.I. KDD ’24, August 25–29, 2024, Barcelona, Spain

2.2 LLMs for relevance annotation generation
Recent advances in LLMs have demonstrated impressive capabil-
ities on a broad range of tasks [1, 27, 61, 64]. Previous work has
specifically considered using LLMs for relevance annotation in an
IR context [15, 25, 44, 63]. Thomas et al. [63] propose using ground
truth relevance labels from human annotators, to find a prompt that
results in the most accurate LLM generated labels. They claim that
this method produces relevance annotations at the same quality
as third-party human assessors but at a fraction of the costs [63].
Clarke et al. [15] propose that LLM relevance-annotation should
be approached as a spectrum, since the involvement of humans can
be varied. For instance, one could delegate most work to an LLM
but add some human verification, as a compromise of reduced costs
and reliability. Faggioli et al. [25] support this approach, as they see
severe risk in blindly following LLM generated relevance labels (at
least for the current state-of-the-art LLMs). The danger foreseen by
both is that generated labels can make systematic errors that lead
to incorrect and unreliable evaluation of IR systems [8, 15, 25]. Our
work addresses this problem, and is thus very related; specifically,
our contribution can be seen as an approach of human verification
designed to quantify uncertainty stemming from LLM usage.

3 Preliminaries
3.1 Evaluation metrics for retrieval systems
The general approach to the evaluation of a retrieval system is to
consider the expected value of a ranking metric across the queries
it will receive [30]. Standard ranking metrics assume that each
document has certain relevance to a query [39]. For a set of labels
R, we use 𝑃 (𝑅 = 𝑟 | 𝑑, 𝑞) to denote the probability that a human
rater would give rating 𝑟 ∈ R, to the combination of document𝑑 and
query 𝑞. We define relevance as the expected rating value over this
distribution: 𝜇 (𝑑 | 𝑞) = ∑

𝑟 ∈R 𝑃 (𝑅 = 𝑟 | 𝑑, 𝑞) 𝑟 . In standard ranking
settings, the goal is to place more relevant documents at higher
ranks [36]. Ranking metrics capture this goal by giving a weight to
each rank, which indicates how much the relevance of a document
placed at that rank should contribute to the metric [35]. We will
use 𝜔 to denote our weighting function which takes the rank of a
document as its input. For example, Precision@K has the following
corresponding weight function: 𝜔Prec@K (𝑥) = 1

𝐾 1[𝑥 ≤ 𝐾]; and
the popular DCG [35]: 𝜔DCG@K (𝑥) = 1[𝑥≤𝐾 ]

log2 (𝑥+1) . Given a choice of
weights and D𝑞 , the set of available documents for query 𝑞, the
metric value for a single query is:

𝑈 (𝑞) =
∑︁
𝑑∈D𝑞

𝜔 (rank(𝑑 | 𝑞,D𝑞)) 𝜇 (𝑑 | 𝑞) . (1)

Let 𝑃 (𝑞) denote the natural query distribution; the performance of
a system in terms of the metric is:

𝑈 (Q) = E𝑞∼Q [𝑈 (𝑞)] =
∑︁
𝑞∈Q

𝑃 (𝑞 | Q)𝑈 (𝑞) . (2)

In practice,𝑈 can never be computed exactly, since 𝑃 (𝑞) and 𝑃 (𝑅 =
𝑟 | 𝑑, 𝑞) are never directly available. Thus, generally, an estimate of
𝑈 is made on a large set of sampled user queries and a few relevance
judgements per document-query pair [57, 73].

3.2 Problem setting
In our setting, we make the standard assumption that a large set
of sampled user queries and a document collection are available.
However, we do not assume that there are human relevance anno-
tations for every document-query pair, and instead, we assume that
ground truth annotations are only available for a small subset: the
first 𝑛 queries out of a total of 𝑁 queries. Unique to our problem
setting is that a generative model is available to predict relevance
annotations. Furthermore, our aim is not to give a point estimate of
the true performance of a system, instead our goal is to construct a
reliable CI around the true value of an IR metric. Thereby, we utilize
the generated relevance annotations, but still explicitly indicate the
resulting uncertainty in our evaluation with CIs.

In formal terms, let 𝛼 ∈ [0, 1] be a confidence parameter, we
desire to find a lower bound𝑈low and an upper bound𝑈high s.t:

𝑃
(
𝑈low ≤ 𝑈 (Q) ≤ 𝑈high

) ≥ 1 − 𝛼. (3)

Accordingly, 𝛼 can be chosen to match the desired confidence, i.e.,
𝛼 = 0.05 leads to a 95% CI. Additionally, in Section 6, we propose
a CRC method that can also bound the performance per query,
thereby, it can meet the following query-level CI goal:

𝑃
(
𝑈low (𝑞) ≤ 𝑈 (𝑞) ≤ 𝑈high (𝑞) | 𝑞 ∼ Q

)
≥ 1 − 𝛼. (4)

We assume that the available generative model predicts a distribu-
tion over possible relevance labels per query-document pair [44, 63].
Let 𝑃 (𝑅 = 𝑟 | 𝑑, 𝑞) indicate the predicted probability for relevance
value 𝑟 for the combination of document 𝑑 and query 𝑞, the mean
predicted relevance is then:

𝜇 (𝑑) =
∑︁
𝑟 ∈R

𝑃 (𝑅 = 𝑟 | 𝑑, 𝑞) 𝑟 . (5)

Using these predicted relevances, we can construct a prediction of
performance on the dataset-level from a sampled set of queries 𝑄 .
This results in the following predicted metric value:

𝑈 (𝑄) = 1
|𝑄 |

∑︁
𝑞∈𝑄

∑︁
𝑑∈D𝑞

𝜔 (rank(𝑑 | 𝑞,D𝑞)) 𝜇 (𝑑 | 𝑞) . (6)

As discussed in previous work [15, 25], basing𝑈 (𝑄) on state-of-the-
art LLMs could greatly reduce costs [63], but there are many risks
involved in replacing human annotators [8]. The accuracy of𝑈 (𝑄)
completely depends on the predictive capabilities of the generative
model. Thus, without further knowledge about the reliability of
the predictions, one has no indication of its trustworthiness. Our
proposed methodologies use the available 𝑛 ground truth query-
level performances together with the many generated relevance
predictions to construct reliable CIs that quantify these risks.

4 Method 1: Prediction-Powered Inference for
Information Retrieval Evaluation

Our first proposed method applies the prediction-powered infer-
ence (PPI) framework to IR evaluation. PPI is a very recent advance-
ment in CI construction introduced by Angelopoulos et al. [3]. It
utilizes computer-generated predictions to create smaller CI when
these predictions are somewhat accurate. The core idea is to avoid
estimating a variable on labelled data directly, and instead, build an
estimate around the predictions which is then corrected based on
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the labelled data [10]. If the predictions are found to be accurate on
the labelled data, then this increases our confidence that its predic-
tions on unlabelled data are also accurate. As predictions become
available in much larger quantities, this can increase our confidence
further in the overall estimate. To the best of our knowledge, we
are the first to apply PPI to IR evaluation.

4.1 Classical empirical mean estimation
Before we detail our application of PPI, it is easiest to start with
classical empirical estimates. As stated in Section 3.2, our aim is to
place a reliable CI around the true performance𝑈 (𝑄), and relevance
annotations are available for the first 𝑛 queries in 𝑄 . Therefore, we
can make an empirical estimate of the mean metric performance
based on these queries:

𝑈 emp (𝑄) =
∑𝑛
𝑖=1𝑈 (𝑞𝑖 )
𝑛

, �̂�2
emp =

∑𝑛
𝑖=1

(
𝑈 emp (𝑄) −𝑈 (𝑞𝑖 )

)2
𝑛 − 1 , (7)

where �̂�2
emp is the estimated variance of the empirical estimate, and

𝑈 (𝑞𝑖 ) the metric value for the single query 𝑞𝑖 (Eq. 1). We note that
its variance is solely reflective of the ground truth data. Obviously,
this estimate does not fully utilize our problems setting, as it ignores
the queries without ground truth relevance annotations and their
corresponding computer-generated relevance annotations.

4.2 Prediction-powered inference
In contrast, PPI mean estimation combines ground truth and pre-
dicted values to create an estimator that has potentially much lower
variance. In our setting, the PPI estimator is a combination of the
estimated mean predicted query performance and the estimated
mean prediction error:

𝑈 PPI (𝑄) =
∑𝑁
𝑖=1𝑈 (𝑞𝑖 )
𝑁︸        ︷︷        ︸

mean prediction

+
∑𝑛
𝑖=1𝑈 (𝑞𝑖 ) −𝑈 (𝑞𝑖 )

𝑛︸                    ︷︷                    ︸
mean prediction error

. (8)

In other words, PPI constructs an estimate of the query performance
based on the predicted relevance annotations, and corrects it by
the estimated error based on the difference between the predicted
and ground truth annotations. As a result, it is unbiased:

E𝑄∼Q
[
𝑈 PPI (𝑄)] = E𝑄∼Q

[
𝑈 emp (𝑄)] = 𝑈 (Q), (9)

Whilst the empirical and PPI estimates have the same expected
value, the key-difference is their variances. Assuming the queries
are i.i.d., the estimated variance of PPI can be decomposed into
a part stemming from the mean prediction and another from the
prediction error:

�̂�2
PPI (𝑄) = �̂�2

pred (𝑄) + �̂�2
error (𝑄),

�̂�2
pred (𝑄) =

𝑁∑︁
𝑖=1

(𝑈 (𝑞𝑖 ) − 1
𝑁

∑𝑁
𝑗=1𝑈 (𝑞 𝑗 ))2

𝑁 − 1 , (10)

�̂�2
error (𝑄) =

𝑛∑︁
𝑖=1

(𝑈 (𝑞𝑖 ) −𝑈 (𝑞𝑖 ) − 1
𝑛

∑𝑛
𝑗=1 (𝑈 (𝑞 𝑗 ) −𝑈 (𝑞 𝑗 )))2

𝑛 − 1 .

This reveals how PPI can benefit from predictions and unlabelled
data. We see that �̂�2

error shrinks as predicted performances become

more accurate, whilst �̂�2
pred shrinks as more unlabelled data be-

comes available (as 𝑁 increases). Comparing �̂�2
PPI with �̂�

2
emp reveals

that PPI can give a lower variance estimate, but only if predictions
are somewhat accurate. Conversely, when they are inaccurate the
variance could actually be greater.

Finally, in order to turn the estimated mean and variance into a
CI, we follow Angelopoulos et al. [3] and assume 𝑈PPI (𝑄) follows
a normal distribution. The 95% confidence interval is then:

𝑈high/low (𝑄) = 𝑈 PPI (𝑄) ± 1.96

√︄
�̂�2
error
𝑛

+
�̂�2
pred
𝑁

. (11)

Accordingly, one can use a different z-score than 1.96 to choose a
different level of confidence. We note that this implicitly assumes
the prediction error follows a symmetric distribution.

This concludes our description of our PPI method. Its biggest
advantage is its simplicity and straightforward application, making
it attractive for practical usage. A limitation is that it only gives a
CI of the overall performance (dataset-level). Therefore, PPI cannot
be used to place CI around individual query performances, and
similarly, it cannot vary its confidence for different queries.

5 Background: Conformal Prediction and
Conformal Risk Control

This section provides the necessary background on conformal pre-
diction and conformal risk control (CRC) [2, 4, 7, 50], before Sec-
tion 6 introduces our CRC approach for IR evaluation.

5.1 Conformal prediction
Conformal prediction provides a unique approach to uncertainty
quantification in predictions [7, 50]. The key characteristic of con-
formal prediction is that its predictions are not individual labels but
sets of labels. For instance, the most basic version of this approach
constructs a prediction set C by including all labels that have a pre-
dicted probability above a threshold 𝜆 ∈ [0, 1] [2]. Let 𝑃 indicate a
predicted probability, 𝑋 contextual features and 𝑌 a corresponding
label, this basic prediction set is then:

Cbasic (𝑋 | 𝜆) = {𝑦 : 𝑃 (𝑌 = 𝑦 | 𝑋 ) > 𝜆}. (12)

Given a set of i.i.d. calibration data, conformal prediction can set 𝜆
so that Cbasic contains the true label with high probability:

𝑃
(
𝑌 ∈ Cbasic (𝑋 | 𝜆)) > 1 − 𝛼. (13)

Thereby, Cbasic can capture the uncertainty in the prediction of
𝑋 , with strong theoretical guarantees, when applied to the same
distribution from which the calibration data was sampled [2].

5.2 Conformal risk control
For purposes other than label prediction, there is a more general
version of this approach: conformal risk control (CRC) [4]. Let C(𝑋 |
𝜆) be an arbitrary function that constructs sets that increase with
𝜆, L a bounded loss function that shrinks as C grows, and in this
context 𝛼 ∈ R, CRC aims to guarantee the expected loss is bounded:

E(𝑥,𝑦)∼𝑃 (𝑋,𝑌 ) [L(C(𝑋 = 𝑥 | 𝜆), 𝑌 = 𝑦)] < 1 − 𝛼. (14)

We can see that this is a generalized version of conformal prediction,
since it is equivalent to Eq. 13 when: L(C, 𝑌 ) = 1[𝑌 ∉ C] [2].

4
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Figure 1: Three different predicted relevance distributions (left) and their corresponding 𝜇CRC (𝑑, 𝜆) curves (right).
CRC can guarantee Eq. 14, by finding a value of 𝜆 based on a set

of 𝑛 i.i.d. calibration data-points such that:

1
𝑛

𝑛∑︁
𝑖=1

L(C(𝑋𝑖 | 𝜆), 𝑌𝑖 ) < 𝛼 − 𝐵 − 𝛼
𝑛

, (15)

where 𝐵 is the maximum possible value ofL. Under the assumption
that the calibration data was sampled from the same distribution
(𝑃 (𝑋,𝑌 )), CRC is proven to provide the bound guarantee stated in
Eq. 14 [2, 4]. We note that it is possible that no 𝜆 value exists that
can satisfy Eq. 15 because the number of data-points 𝑛 is too small.
In this case, the method explicitly fails to provide a CI, thereby, CRC
indicates when it is unable to guarantee reliable CIs. The generality
and flexibility of the CRC framework enables us to build our own
CI method for IR evaluation on top of it.

6 Method 2: Conformal Risk Control for
Information Retrieval Evaluation

Our second proposed method uses conformal risk control (CRC) for
CI construction [4]. In contrast with PPI, it can provide both CI
around mean performance and per query performance. It also relies
on different assumptions than PPI and empirical bootstrapping.

Our description of the method is divided into three parts: firstly,
we introduce our C function, secondly, we describe how calibra-
tion data is gathered, and thirdly, we propose our alternative dual-
calibration approach specific for CIs.

6.1 Optimistic and pessimistic estimation
For our purposes, C will construct CIs for the relevance of each
individual document, that are then translated into CIs on query and
dataset-level performance. Thus, our CRC method treats each CI as
a set that includes all values between its minimum and maximum.
Accordingly, we must predict the boundaries of CIs on a document-
level, therefore, we propose two functions: 𝜇high and 𝜇low, that
provide more optimistic and pessimistic predictions than 𝜇, respec-
tively. We wish the optimism/pessimism to follow the confidence
of the generative model, thus, we take the predicted distribution 𝑃
and remove 𝜆 probability from the top or bottom labels:1

�̂�high (𝑅 = 𝑟 |𝑑, 𝜆) = 𝑃 (𝑅 = 𝑟 |𝑑) − max
(
0, 𝜆 −

∑︁
𝑟 ′∈R:𝑟 ′<𝑟

𝑃 (𝑅 = 𝑟 ′ |𝑑)
)
,

�̂�low (𝑅 = 𝑟 |𝑑, 𝜆) = 𝑃 (𝑅 = 𝑟 |𝑑) − max
(
0, 𝜆 −

∑︁
𝑟 ′∈R:𝑟 ′>𝑟

𝑃 (𝑅 = 𝑟 ′ |𝑑)
)
.
(16)

We note that when 𝜆 is greater than the predicted probability for
the lowest/highest label, the remainder is subtracted from the next
lowest/highest label, and so forth. The results are normalized to

1For brevity, we omit 𝑞 from our notation: 𝑃 (𝑅 = 𝑟 |𝑑,𝑞) = 𝑃 (𝑅 = 𝑟 |𝑑 ) .

produce the valid probability distributions; 𝑃high and 𝑃low:

𝑃high/low (𝑅 = 𝑟 | 𝑑, 𝜆) =
�̂�high/low (𝑅 = 𝑟 | 𝑑, 𝜆)∑

𝑟 ′∈R �̂�high/low (𝑅 = 𝑟 ′ | 𝑑, 𝜆)
. (17)

Due to possible bias in the predicted relevance annotations, e.g.,
all predictions could be severe over or underestimates, we want to
enable both boundaries of CIs to be optimistic or pessimistic. For
elegance, we let 𝜆 ∈ (−1, 1) and our perturbed distribution is either
optimistic or pessimistic based on the sign of 𝜆:

𝑃CRC (𝑅 = 𝑟 | 𝑑, 𝜆) =
{
𝑃high (𝑅 = 𝑟 | 𝑑, 𝜆) if 𝜆 ≥ 0,
𝑃low (𝑅 = 𝑟 | 𝑑,−𝜆) otherwise.

(18)

The final optimistic or pessimistic estimates are the expected values
over these perturbed distributions:

𝜇CRC (𝑑, 𝜆) =
∑︁
𝑟 ∈R

𝑃CRC (𝑅 = 𝑟 | 𝑑, 𝜆)𝑟 . (19)

Figure 1 visualizes how 𝜇CRC varies over different 𝜆 values for
three different predicted relevance distributions. We see that low
predicted probabilities for the largest labels mean that 𝜆 has to be
greater for 𝜇CRC to reach high values, and vice versa, 𝜆 has to be
lower for low probabilities for the lowest label values to reach low
values. In other words, it takes more extreme 𝜆 values for 𝜇CRC to
be heavily optimistic when the generative model is very confidently
pessimistic, and vice versa.

The document-level 𝜇CRC are translated to performance esti-
mates following Eq. 1 & 6 but with 𝜇 (𝑑) replaced by 𝜇CRC (𝑑, 𝜆).
Finally, to construct CIs, we use two parameters: 𝜆high ∈ (−1, 1)
and 𝜆low ∈ (−1, 1), s.t. 𝜆low < 𝜆high, to obtain 𝑈CRC (𝑄, 𝜆low) and
𝑈CRC (𝑄, 𝜆high). The predicted CI is the range between the per-
turbed estimates:

C(𝑄, 𝜆high, 𝜆low) = [𝑈CRC (𝑄, 𝜆low),𝑈CRC (𝑄, 𝜆high)] . (20)

Our proposed C function has several significant properties that
enable it to function well as CI: When 𝜆low = 𝜆high = 0, it only
contains the predicted𝑈 (𝑄) value, since:𝑈CRC (𝑄, 0) = 𝑈 (𝑄). As
the 𝜆 approach one and minus one, the perturbed estimates become
the minimum and maximal possible metric values:

lim
𝜆high→1,𝜆low→−1

C(𝑄, 𝜆high, 𝜆low) = [max𝑈 (·),min𝑈 (·)] . (21)

Consequently, there always exists values for 𝜆high and 𝜆low to bound
the true performance 𝑈 (Q), since it must lie between the minimal
and maximal possible metric values:

∃𝜆high ∈ (−1, 1), 𝜆low ∈ (−1, 𝜆high]; 𝑈 (Q) ∈ C(𝑄, 𝜆high, 𝜆low) .
To summarize, we have proposed a novel C(𝑄, 𝜆) function that

creates a CI based on the relevance annotations of a generative
model. It follows the confidence of the underlying generative model
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by perturbing the predicted relevance distributions in an optimistic
or pessimistic manner. The remainder of this section explains how
we determine the values of 𝜆high and 𝜆low such that a reliable CI is
found that captures the true metric value with high confidence.

6.2 Data sampling and bootstrapping
In order to perform CRC calibration, a set of ground truth examples
is required to serve as calibration data. In our setting, we aim to
estimate the mean over the true query-distribution Q based on the
sampled set of queries 𝑄 . Accordingly, a set of examples of mean
estimates based on sampled set from Q is required; we create 𝑀
examples by sampling from the 𝑛 queries in 𝑄 with ground truth
annotations: 𝑄𝑖 ⊂ {𝑞1, 𝑞2, . . . 𝑞𝑛}. The collection of these 𝑀 sets
should mimic the distribution of Q: Q̄ = {𝑄1, 𝑄2, . . . , 𝑄𝑀 }.

There are many options to construct Q̄, for instance, one could
sample queries with or without replacement, the size of the sampled
sets could be varied, etc. Moreover, if one wants to create CIs around
the performance of each query, they can choose the sets to contain
a single query: 𝑄𝑖 = {𝑞𝑖 }. Another option is to sample queries and
subsets of the document to be ranked, to artificially increase the
variety in candidate documents available per query. Choices that
increase the number of examples𝑀 have the potential to decrease
CI width. However, if the resulting Q̄ is no longer representative
of the true distribution Q, the reliability of the CIs will decrease.

6.3 Dual-calibration for confidence intervals
With our definition of C(𝑄, 𝜆high, 𝜆low) and the calibration data Q̄,
all that remains is to calibrate 𝜆high and 𝜆low. However, standard
CRC is designed for the calibration of a single parameter. Luckily,
for the purpose of construction a CI, we can apply CRC calibration
sequentially. Because for any𝑈low < 𝑈high, the following holds:(

𝑃 (𝑈 ≤ 𝑈low) ≤
𝛼

2 ∧ 𝑃 (𝑈 ≥ 𝑈high) ≤
𝛼

2

)
−→ 𝑃 (𝑈low ≤ 𝑈 ≤ 𝑈high) ≤ 1 − 𝛼.

(22)

Therefore, we can first calibrate one of the bounds with CRC, and
the other afterwards. Accordingly, we propose two loss functions:

Lhigh
(CCRC (𝑄, 𝜆high),𝑈 (𝑄)) = 1[𝑈CRC (𝑄, 𝜆high) < 𝑈 (𝑄)],

Llow
(CCRC (𝑄, 𝜆low),𝑈 (𝑄)) = 1[𝑈CRC (𝑄, 𝜆low) > 𝑈 (𝑄)] . (23)

Through applying two binary search procedures, we find the values
for 𝜆high ∈ (−1, 1) and 𝜆low ∈ (−1, 1) such that 𝜆low < 𝜆high and:

1
𝑀

𝑀∑︁
𝑖=1

Lhigh/low
(CCRC (𝑄𝑖 , 𝜆high/low),𝑈 (𝑄𝑖 )

)
<

1
2

(
𝛼 − 1−𝛼

𝑀

)
. (24)

Consequently, according to Eq. 22, it must be the case that the CRC
requirement for the complete interval holds:

1
𝑀

𝑀∑︁
𝑖=1

1
[
𝑈 (𝑄𝑖 ) ∈ CCRC (𝑄𝑖 , 𝜆high, 𝜆low)

]
< 𝛼 − 1 − 𝛼

𝑀
. (25)

Therefore, the resulting CI has the desired reliability, when applied
to the distribution underlying Q̄:

𝑃
(
𝑈CRC (𝑄, 𝜆low) ≤𝑈 (𝑄) ≤𝑈CRC (𝑄, 𝜆high) |𝑄 ∼ Q̄

)
> 1−𝛼. (26)

Table 1: DCG@10 performance of different rankers as mea-
sured by human-annotated labels and LLM-generated labels.
Each approach ranks the top-100 results retrieved by BM25.

TREC-DL Robust04
Human LLM Human LLM

Random 3.16 6.86 0.99 2.96
BM25 8.25 12.93 2.71 4.32
LLM 12.81 23.73 3.23 7.17
Perfect 19.00 17.44 5.70 4.65

Accordingly, we assume that this (Eq. 26) implies the following:

𝑃
(
𝑈CRC (𝑄, 𝜆low) ≤𝑈 (Q) ≤𝑈CRC (𝑄, 𝜆high) |𝑄 ∼ Q

)
> 1−𝛼. (27)

This is a very standard assumption made in CI literature, and at
the core of many bootstrapping methods [22, 24]. If Q̄ is created by
standard sampling from 𝑄 , then this is a relatively safe assumption.

6.4 Overview
Finally, we give an overview of the different components in our
CRC approach: Our CI are created with the CCRC (𝑄, 𝜆high, 𝜆low)
function (Eq. 20), where𝑄 are all available queries (no ground truth
annotations required). We note that when the set 𝑄 contains a
single query, it produces a CI for query-level performance.

The resulting CI are only reliable if 𝜆high and 𝜆low are properly
calibrated. We do so by first sampling a collection of query-sets Q̄
(Section 6.2) and calibrating each parameter independently (Eq. 24).
Due to the nature of CI (Eq. 22), this guarantees the CRC require-
ment is met (Eq. 25), and assuming Q̄ is representative of Q, this
guarantees that our CI are reliable with a given probability (Eq. 27).

7 Experimental Setup
Our experiments compare the confidence intervals produced by
PPI, CRC and classical empirical bootstrapping on benchmark IR
datasets, by answering the following research questions:2

RQ1: How many human-annotated labels are required to produce
informative confidence intervals?

RQ2: How resilient are the confidence intervals to systematic mis-
takes made by LLM labelers?

RQ3: What benefits could PPI and CRC get from potential improve-
ments in the accuracy of label generation?

RQ4: Can CRC capture differences in uncertainty per query?
LLM-generated relevance labels. For each query-document

pair, a prompt is constructed that asks the LLM to assess the rele-
vance according to the relevance scales of the dataset, in our case:
0–2 (Robust04) and 0–3 (TREC-DL). The LLM is provided with
clear definitions of the different relevance labels, similar to [63].
Specifically, instructions that give definitions for relevance labels
in each prompt. We chose prompts that mimic the instructions
for human annotators as closely as possible, hereby, we hope to

2Our experimental implementation and our dataset of generated LLM labels are
available at: https://github.com/google-research/google-research/tree/master/high_
confidence_ir_eval_using_genai
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Figure 2:Width (top) and coverage (bottom) of the confidence
intervals produced by the methods. The dashed line in the
bottom plots is the 95% coverage target. Shaded areas indicate
95% prediction intervals over 500 independent runs.

precisely simulate the manual labeling process for each dataset.
The exact prompts are provided in Appendix A.

To obtain relevance labels, we run the LLMs in ‘scoringmode’ [76].
That is, for each relevance label 𝑟 ∈ R, we compute the log-probability
of the LLM outputting the relevance rating 𝑟 . The log-probabilities
are then normalized via a softmax function so that we obtain a
probability distribution that represents the LLM’s confidence in
assigning each relevance label to the query-document pair.

As our LLM model, we choose to use Flan-UL2 [42, 60], because
it is open source and has demonstrated strong performance on rank-
ing tasks [55]. It is worth noting that larger, more powerful, LLMs
exist [61], and that we do not utilize any prompt-engineering [63].
These choices were made because the goal of our experiments is not
to find the best LLM-generated labels, but to confirm whether the
confidence intervals proposed by our methods accurately capture
the uncertainty in LLM-generated relevance labels. Since advance-
ments in LLM techniques result in rapid changes in the state-of-
the-art, we choose to focus on the established human annotator
setting instead [17, 71].

Datasets.Our evaluation is based on two established benchmark
datasets: TREC-DL [17] and TREC-Robust04 [71]. Both datasets
are comprised of documents and queries together with human-
annotated relevance judgments. For each dataset, we perform a
random 50:50 split to obtain a validation and test set where the
validation set is used for calibration of the methods. (A training
set is not required in our setting.) To avoid distribution shifts, for
TREC-DL, we create a stratified sample over four years (2019 -
2022) that ensures each year is equally represented in each split. As
the ranker to evaluate, we choose BM25, as the metric we choose
DCG@10 [35]. In other words, our methods will construct CIs
around the DCG@10 of BM25 on both datasets. Table 1 displays
the ranking performance of BM25 and the LLM-generated labels.
To match the gain function of DCG all labels were transformed
accordingly: 𝑟 ′ = 2𝑟 − 1, for all performance estimations.

Methods in comparison. The methods included in our com-
parison are: (i) empirical bootstrapping [22], (ii) prediction-powered
inference (PPI) (Section 4), and (iii) conformal risk control (CRC)
(Section 6). The empirical bootstrap approach acts as a baseline
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Figure 3: Width of the confidence intervals for increasing
levels of LLM bias (𝛽 , top-row) and oracle-enhanced LLM ac-
curacy (𝜏 → 1, bottom row) with 𝑛 = 112 on TREC-DL and
𝑛 = 125 on Robust04. Shaded areas indicate 95% prediction
intervals over 500 independent runs. Coverage plots are omit-
ted since all methods maintain >95% coverage.

that only considers the available human-labeled data, this is a stan-
dard approach in previous IR literature [5, 56, 72, 73, 75]. All our
empirical bootstrap CI are based on 10,000 bootstrap samples. PPI
is computed by applying Eq. 11 to both the validation set (the first
𝑛 queries) and the test set (the remaining 𝑁 − 𝑛 queries), it utilizes
both human and LLM-generated labels. Finally, our CRC approach
also utilizes both, we use the validation set to calibrate the 𝜆 param-
eters and then compute the CI using only the LLM-generated labels
on the test-set. For calibration, CRC is provided𝑀 = 10,000 batches
each consisting of 𝑛 queries that were sampled with replacement
from the validation set (see Section 6.2). We note that the batch
size depends on the number of available queries with human an-
notations, which is varied in our experiments. For the CIs to be
evaluated, the CI is applied to the entire test-set to obtain a dataset-
level CI, i.e., we compute C(𝑄test, 𝜆high, 𝜆low) (Eq. 20). Some of our
experiments consider CRC CIs around query-level performance, in
these cases, 𝜆 is not calibrated on bootstrapped batches but on 𝑛
batches that each contain a single query.

We evaluate the CIs produced by each method by considering
their width and coverage. The width measures how wide and thus
how informative or specific the CI is, where a smaller width is better.
The coverage measures how frequent the CI covers the true perfor-
mance on the test-set over 500 independently repeated experiment
runs, thus the higher the better. The target for all the methods is a
coverage of 95% or higher and we set 𝛼 = 0.05 accordingly.

8 Results
8.1 Number of required human-annotations
Our main results are displayed in Figure 2. Here we see how the
width and coverage of the different methods vary, as they are pro-
vided with 𝑛 queries with human annotations sampled from the
validation set. As expected, all methods provides better CIs when
provided with larger portion human-annotated queries, i.e., as 𝑛
increases coverage increases and width decreases.

7
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Figure 4: 95% CI produced per-query by CRC using LLM predicted relevance annotations (𝜏 = 0) and oracle-enhanced LLM
annotations (𝜏 > 0). The queries are sorted by their true DCG performance (according to human-annotations), indicated by red
and green dots. Green dots are covered by their CI whereas red dots are not. Blue dots indicate the predicted DCG performance
(according to LLM-generated annotations). Clearly, the CIs shrink considerably as annotations become more accurate (𝜏 → 1).

We start by considering the performance of the empirical boot-
strap baseline. On the TREC-DL dataset, we see that it requires
at least 40 labeled queries to achieve 95% coverage. Furthermore,
on Robust04, with 100 labeled queries it almost reaches 95% cover-
age. However, the plotted prediction intervals around the reported
coverage reveal that many of its runs did not reach 95% coverage.

In contrast, both our PPI and CRC approaches have stronger
coverage with less queries: PPI needs less than 20 queries on TREC-
DL and less than 40 on Robust04. Similarly, CRC needs less than 30
on TREC-DL and less than 50 on Robust04. In terms of width, CRC
clearly provides the smallest width of all the methods, whilst PPI is
worse than empirical bootstrap on TREC-DL and comparable on
Robust04. This comparison is not entirely fair, i.e., there is generally
a tradeoff between coverage and width, it appears PPI does better
in terms of coverage but that results in wider CIs. Thus, PPI has
a clear advantage over empirical bootstrap on Robust04 where it
has the same width but much better coverage. Nevertheless, when
CRC and PPI have the same coverage, CRC has smaller widths, with
an especially large difference on TREC-DL. Therefore, it appears
that CRC has the most informative CI, whilst PPI needs fewer
queries to reach 95% coverage. Both methods provide substantial
improvements over empirical bootstrapping.

Thus we answer RQ1 as follows: both PPI and CRC require as
few as 30 human-labeled queries to produce informative and reli-
able confidence intervals. Whilst empirical bootstrapping requires
significantly more human-labeled queries to achieve similar results.

8.2 Sensitivity to LLM accuracy
Our PPI and CRC methods can benefit from accurate LLM labels,
but in order to be reliable, it is also important that they are ro-
bust to inaccurate labels. We investigate the effect of LLM accu-
racy by adding adversarial bias to the predicted relevance dis-
tributions, with 𝛽 ∈ [0, 1], change the predictions as follows:
𝑃𝛽 (𝑅 = 𝑟 | 𝑑, 𝑞) = 1

𝑍

(
(1 − 𝛽)𝑃 (𝑅 = 𝑟 | 𝑑, 𝑞) + 𝛽 (1 − 𝑃 (𝑅 = 𝑟 | 𝑑, 𝑞))

)
,

where 𝑍 is a normalizing factor to ensure the result is a valid proba-
bility distribution. For 𝛽 = 0 this leaves predictions unaltered, with
𝛽 = 0.5 this is a uniform distribution and at 𝛽 = 1 it produces the
inverse of the original predictions.

Figure 3 shows the widths as 𝛽 is varied (𝑛 = 112 on TREC-
DL and 𝑛 = 125 on Robust04). We do not report coverage as all
methods obtain a mean coverage of at least 95%.When 𝛽 < 0.5, CRC
consistently provides better widths than empirical bootstrap, whilst
PPI has inconsistent improvements. As expected, when 𝛽 > 0.5
both methods do worse than empirical bootstrap in terms of width.

Thus, we can answer RQ2: the coverage of both PPI and CRC-
bootstrap are robust to systematic mistakes made by the LLM,
however, improvements in widths are dependent on LLM accuracy.

8.3 Potential from more accurate labels
We run additional experiments to understand how the CIs behave
under an oracle LLM: one that can perfectly generate relevance
labels. In Figure 3, we increasingly interpolate between the LLM-
generated relevance labels and the true (human-annotated) rel-
evance labels using a parameter 𝜏 ∈ [0, 1]. As 𝜏 increases, the
performance of the LLM labels becomes better. First, we note that
all methods retain a perfect 100% coverage in these scenarios, so
we omit the plots for coverage. The empirical bootstrap approach
does not use the LLM-generated labels and its CI is thus not im-
pacted by the increasingly stronger LLM labels. The PPI method is
able to leverage the stronger LLM labels and is able to significantly
outperform the empirical bootstrap method. The fact that its CI is
placed around the overall performance (dataset-level), prevents it
from further improving the width, as it is inherently limited by the
number of queries. The CRC approaches are able to work around
this limitation by efficiently identifying that the LLM-generated
labels are more accurate as 𝜏 → 1 on the per-document level. Their
per-query CIs correspondingly shrink and approach 0 as the LLM-
generated labels become better. This answers RQ3: Both PPI and
CRC benefit from improvements in label generation accuracy.

8.4 Query-performance confidence intervals
We plot the confidence intervals produced by CRC on individual
queries in Figure 4. Each plot in the figure shows the true DCG
(based on human-annotated relevance labels) and the predicted
DCG (based on LLM-generated labels) of all queries in the test split.
The queries are sorted by their true DCG, that is, queries where
the ranker performs best appear on the left and progressively the
query performance goes down. Furthermore, we plot the per-query

8



Reliable Confidence Intervals for Information Retrieval Evaluation Using Generative A.I. KDD ’24, August 25–29, 2024, Barcelona, Spain

CI for varying values of 𝜏 , to indicate how the confidence intervals
behave as the LLM-generated labels become more accurate, similar
to Section 8.3. First, for all plots, we observe that the CIs vary per
query: CRC captures the uncertainty throughout LLM-generated
labels. Second, for the LLM-generated labels (𝜏 = 0), we observe
that when the LLM predicts that the ranker performs poorly on a
query, the bounds tend to be smaller for that query. Similarly, when
the predicted performance of the ranker is large, the bounds tend to
be wider. This indicates that the LLM-generated labels are generally
better at identifying queries with poor ranking performance. Third,
as 𝜏 → 1, we see that CRC is able to identify that the labels are
more accurate and its per-query CIs become significantly tighter.
This shows that CRC is not only able to vary its CI per query, but
is also able to establish better per-query CIs as LLM labels become
more accurate. This is especially noticeable in the 𝜏 = 0.75 plot for
TREC-DL (top-right plot in Figure 4). In this plot there is a single
outlier query on the left where the LLM is wrong and its predicted
labels are uncertain. As a result the CRC method correctly places a
very wide CI around this particular query, while keeping the CIs on
other queries tight. Finally, on both datasets the empirical coverage
of 95% is reached, indicating the CIs are reliable. Thus, we answer
RQ4 positively: CRC is able to construct CIs on a per-query basis.

9 Conclusion
In this paper we study reliable evaluation of IR systems using LLM-
generated relevance labels. Obtaining human-annotated relevance
labels is costly, especially in low-resource settings. While LLMs can
help generate relevance labels at scale, they are prone to make sys-
tematic errors andmay be unreliable.We resolve this by introducing
two methods that construct confidence intervals (CIs) around rank-
ing metrics produced by LLM-generated relevance labels: PPI and
CRC. These approaches require a small amount of reliable ground
truth annotations to statistically analyze the distribution of errors
and correct those errors.

Our results demonstrate that the proposed methods can correct
errors in LLM-generated labels and produce reliable CIs. Compared
to other CI approaches, we can produce CIs of superior coverage
with tighter bounds, leading to more informative evaluation. Fur-
thermore, the CIs produced by CRC can be computed per-query,
providing further insights into low or high performing queries.

Our work is not without limitations. First, we note that our meth-
ods require an LLM with scoring-mode to produce a distribution
over LLM labels. For LLMs without scoring-mode one could gener-
ate multiple labels stochastically to approximate a predicted distri-
bution. Second, our results suggest that applying some smoothing
to the LLM-generated label distribution is beneficial to the resulting
CIs. How to systematically optimize the amount of smoothing is an
open question. Similarly, fine-tuning or prompt-engineering could
also lead to distributions better suited for CI construction. Third, we
only use the Flan-UL2 as an LLM labeler. Our work can be extended
to use different and potentially more powerful LLMs. Future work
could explore all of these directions further.
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A Prompts
The exact prompts used in our experiments are listed here. We
note that these prompts are tailored towards each dataset and use
the relevance label definitions that human labelers used for each
dataset. The {query} and {passage}/{document} are placeholders
that are formatted with the actual query and passage/document
during inference.

We observed that the model is sensitive to the particular prompt
and dataset during scoringmode. For TREC-DLwe score the suffixes
"0", "1", "2" and "3". For Robust04 we found that scoring the suffixes
with brackets is more effective: "[0]", "[1]" and "[2]".

Listing 1: Prompt for TREC-DL.
Assess the relevance of the passage to the query on a four-point

scale:
[0] Irrelevant: The passage has nothing to do with the query.
[1] Related: The passage seems related to the query but does not

answer it.
[2] Highly relevant: The passage has some answer for the query, but

the answer may be a bit unclear, or hidden amongst extraneous
information.

[3] Perfectly relevant: The passage is dedicated to the query and
contains the exact answer.

Query: {query}
Passage: {passage}
Relevance:

Listing 2: Prompt for Robust04.
Assess the relevance of the document to the query on a three-point

scale:
[0] Not relevant: The document is not relevant to the query.
[1] Relevant: Parts of the document may be relevant to the query.
[2] Highly Relevant: The document is highly relevant to the query.

Query: {query}
Document: {document}
Relevance:
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