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Abstract
Choice models predict which items users choose from presented

options. In recommendation settings, they can infer user prefer-

ences while countering exposure bias. In contrast with traditional

univariate recommendation models, choice models consider which

competitors appeared with the chosen item. This ability allows

them to distinguish whether a user chose an item due to preference,
i.e., they liked it; or competition, i.e., it was the best available op-
tion. Each choice model assumes specific user behavior, e.g., the

multinomial logit model. However, it is currently unclear how accu-

rately these assumptions capture actual user behavior, how wrong

assumptions impact inference, and whether better models exist.

In this work, we propose the learned choice model for recom-
mendation (LCM4Rec), a non-parametric method for estimating the

choice model. By applying kernel density estimation, LCM4Rec

infers the most likely error distribution that describes the effect

of inter-item cannibalization and thereby characterizes the users’

choice model. Thus, it simultaneously infers what users prefer and
how they make choices. Our experimental results indicate that our

method (i) can accurately recover the choice model underlying a

dataset; (ii) provides robust user preference inference, in contrast

with existing choice models that are only effective when their as-

sumptions match user behavior; and (iii) is more resistant against

exposure bias than existing choice models. Thereby, we show that

learning choice models, instead of assuming them, can produce

more robust predictions. We believe this work provides an impor-

tant step towards better understanding users’ choice behavior.
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1 Introduction
Traditional implicit collaborative filtering methods assume that all

items are chosen independently of each other [35, 36]. Accordingly,

they estimate an item’s relevance score purely from information

about which users interacted with it [24]. In reality, users must

often decide for one of multiple items that the recommender system

exposes together, for example, when ordering lunch [30], booking

a flight [27], or choosing a movie [37]. Consequently, the choices

for one item and against others are dependent.

One prominent class of models than accounts for dependencies

between choices are so-called choice models. Choice models pre-

dict the choice probabilities according to the preference towards

each option, while also considering the competitive effect between

options. They model this competitive effect through a probabilistic

noise distribution, which is their key-characteristic. For instance,

the multinomial logit model (MNL) [40], which is equivalent to the

softmax, is characterized by its Gumbel noise distribution. Many

sequential models, such as BERT4Rec [38], employ the softmax loss

to predict the next user interaction. Furthermore, Krause et al. [29]

showed that choice models are significantly more robust against

exposure bias, particularly against exposure bias from competition

among items. By providing choice probabilities, choice models can

also contribute to related tasks such as balancing trade-offs in re-

sponsible recommendation [20] or, potentially, informing whether
to make a recommendation and how many items to recommend.

However, existing approaches are only effective when the as-

sumed choice model matches the true user behavior. Employing

the wrong choice model can bias choice probabilities [40]. This

poses a significant limitation, since the most accurate choice model

for a given use case is generally unknown. Identifying it through

benchmarking is practically infeasible since infinitely many possi-

ble choice models exist and some choice models, such as the popular

probit, lack a closed-form analytical solution [9].

In this work, we directly address this limitation by proposing the

learned choice model for recommendation (LCM4Rec), a novel user-
modeling method that simultaneously learns the most likely choice

model and user preferences. Instead of assuming the probabilistic

noise distribution underlying the true users’ choice model, we uti-

lize a non-parametric kernel density estimator to approximate it.

Specifically, LCM4Rec maximizes the log-likelihood of observed

interaction data, and thereby, infers both the most likely utility dis-

tribution (i.e., the user preferences) and noise distributions (i.e., the

choice model) underlying their interactions. Because kernel density

estimators can be used to approximate any arbitrary probability

distribution, LCM4Rec is applicable to any possible choice model.
1

Moreover, because the choice model is inferred from interaction

1
Any choice model for which the error terms are IID.
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data, we do not rely on a priori assumptions about what choice

model users follow,
2
in contrast with previous work [29]. Addition-

ally, we investigate the negative implications from assuming an

inaccurate choice model with respect to ranking, choice probability

estimation and exposure bias robustness.

In summary, LCM4Rec resolves the need for benchmarking or

assuming choice models and is applicable to any choice model.
2

It simultaneously learns user preferences towards items as well as

the competitive effects between presented items. Our experimental

results on synthetic datasets indicate LCM4Rec is robust to what

choice model underlies interaction data. Whilst existing methods

can only accurately infer preferences when their assumed choice

model matches the true model, LCM4Rec provides reliable and ro-

bust performance regardless of the underlying model. Furthermore,

our results show that LCM4Rec is better at mitigating exposure

bias. We also found that employing inaccurate choice models skews

choice probabilities and increases exposure bias vulnerability.

To the best of our knowledge, we introduce the first method that

both learns users preferences as how users choose between recom-

mended options. Besides the improved effectiveness and robustness

of LCM4Rec, we believe our work contributes to the better modeling

and understanding of user behavior whilst avoiding assumptions.

2 Related work and Background
2.1 Discrete choice models for recommendation
Discrete choice models estimate with which probability 𝑃𝑖 𝑗 |𝐶 a

user 𝑖 ∈ 𝐼 would choose an item 𝑗 ∈ 𝐽 from a discrete choice

set 𝐶 ∈ C by utilizing the transitive information on which items

are preferred over another. These models assume that each user

would always chose the choice alternative 𝑗 ∈ 𝐶 from which they

expect the highest utility𝑈𝑖 𝑗 . Econometricians use discrete choice

models for determining how a variable affects preferences [21] and

operations researchers use them for solving optimization problems

based on observed choice data [14]. Discrete choice models have

also been used for recommendation, most prominently under the

term collaborative competitive filtering [42]. Their key difference

from classical implicit feedback collaborative filtering models is

that they require information about displayed choice alternatives.

In recent years, more such data has become available, for example

in the finn.no dataset [18] or the 2024 RecSys Challenge dataset3.
To account for the fact that humans do not to strictly chose tran-

sitively [10], discrete choice models are probabilistic. They model

the total utility 𝑈𝑖 𝑗 as the sum of a deterministic utility 𝑉𝑖 𝑗 and a

random error term 𝜖𝑖 𝑗 s.t.𝑈𝑖 𝑗 = 𝑉𝑖 𝑗 + 𝜖𝑖 𝑗 . In the recommendation

context, the deterministic utility 𝑉𝑖 𝑗 corresponds to the relevance

scores. The random error is interpreted as the share of utility that

analysts cannot observe [40]. Thereby, it enables discrete choice

models to capture that identical circumstances can result in different

choices, or that succeeding choices can appear contradicting.

Our study focuses on the shape of the distribution that under-

lies 𝜖𝑖 𝑗 . The most commonly assumed error distribution is the IID

Gumbel distribution of the multinomial logit model which results

2
To be precise, we only make the assumption that choice model error terms are IID.

3
https://recsys.eb.dk/dataset/

in the following softmax-like choice probabilities [40]:

𝑃𝑖 𝑗 |𝐶 =
exp

(
𝑉𝑖 𝑗

)∑
𝑗 ′∈𝐶 exp

(
𝑉𝑖 𝑗 ′

) . (1)

The closed analytical form and easy interpretability of its choice

probabilities have contributed to the popularity of the multinomial

logit model [40]. Its key property is its assumption of the irrelevance

of independent alternatives (IIA), which states that the ratio of

choice alternatives between two items does not depend on any

third item’s utility [4]. However, this key property is also a source

of criticism [5]. Empirical studies indicate that the IIA assumption

is inaccurate in many settings [6].

2.2 Non-parametric discrete choice models
Instead of having the analyst guess the correct choice model, non-

parametric estimators learn the error distribution. This approach

builds on the idea that the choice probabilities can be re-written as:

𝑃𝑖 𝑗 |𝐶 = 𝑃 (∀𝑗 ′ ∈ 𝐶, 𝑗 ′ ≠ 𝑗 → 𝑈𝑖 𝑗 > 𝑈𝑖 𝑗 ′ )
= 𝑃 (∀𝑗 ′ ∈ 𝐶, 𝑗 ′ ≠ 𝑗 → 𝑉𝑖 𝑗 + 𝜖𝑖 𝑗 −𝑉𝑖 𝑗 ′ > 𝜖𝑖 𝑗 ′ ).

(2)

Under the assumption that all error terms 𝜖𝑖 𝑗 are IID distributed to

some random variable 𝜖 with cdf 𝐹𝜖 and pdf 𝜌𝜖 , Manski [32] points

out that the choice probabilities can be further reformulated as:

𝑃𝑖 𝑗 |𝐶 =

∫
𝜌𝜖 (𝑒𝑖 𝑗 )

∏
𝑗 ′∈𝐶,𝑗 ′≠𝑗

𝐹𝜖 (𝑉𝑖 𝑗 + 𝑒𝑖 𝑗 −𝑉𝑖 𝑗 ′ )𝑑𝑒𝑖 𝑗 , (3)

and proposes a maximum score estimator that estimates a ranking

function and that enables computing the effect of observed vari-

ables on the utility 𝑉𝑖 𝑗 consistently in the binary case with two

choice options. Cosslett [15] criticizes the maximum score esti-

mator for being inapplicable to inferring choice probabilities and

instead provides an estimator for the cdf 𝐹𝜖 in the binary case. As

outlined for the multivariate case by Briesch et al. [8], the core

idea is that given the deterministic utilities 𝑉𝑖 𝑗 , the choice distri-

bution exclusively depends on 𝐹𝜖 and 𝜌𝜖 . Thus, for 𝑁 observa-

tions {(𝑖𝑛, 𝑗𝑛,𝐶𝑛)}𝑛≤𝑁 ⊆ 𝐼 × 𝐽 × C, one can estimate 𝜖 by defining

a broad family of distributions F , and subsequently select the mem-

ber which minimizes the negative log-likelihood:

𝐹 B argmin

𝐹 ∈F
−

𝑁∑︁
𝑛=1

log(𝑃𝑖𝑛 𝑗𝑛 |𝐶𝑛
). (4)

However, Cosslett [15] uses sorting and linear interpolation for

estimating 𝐹 , which is intractable for gradient descent. They also

only consider the binary case. To the best of our knowledge, no

other existing approach is directly applicable to the recommender

systems setting either. Matzkin [34] drops any assumptions on the

shape of 𝑉 , but derives a discrete optimization problem that re-

turns a non-differentiable estimator. Horowitz [23] smoothes the

maximimum score estimator but still cannot infer choice probabili-

ties. For the binary case, Klein and Spady [28] estimate the choice

probabilities 𝑃𝑖 𝑗 |𝐶 directly. However, generalizing their method to

the multivariate case requires density estimation with as many di-

mensions as choice alternatives, which is unfeasible for our setting

where choice sets can contain 20 items or more [18]. More recent

works focus increasingly on challenges that are beyond current con-

cerns in recommender systems research. For example, Hirano [22]

2
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Table 1: Cannibalization patterns according to two different
choicemodels. For items 𝑗1, 𝑗2, 𝑗3 with utilities𝑉𝑖 𝑗1 = 3,𝑉𝑖 𝑗2 = 1,
𝑉𝑖 𝑗3 = 2, the models agree on the choice probabilities between
𝑗1 and 𝑗2, but disagree when the option 𝑗3 is also available.

Model Choice set

Choice probability

𝑗1 𝑗2 𝑗3

Multinomial logit

{ 𝑗1, 𝑗2} 88.1% 11.9% —

{ 𝑗1, 𝑗2, 𝑗3} 66.5% 9.0% 24.5%

Exponomial

{ 𝑗1, 𝑗2} 88.1% 11.9% —

{ 𝑗1, 𝑗2, 𝑗3} 70.2% 5.3% 24.5%

develops a solution for random effect autoregressive models with

non-parametric idiosyncratic shocks. Others use techniques that

we deem incompatible with gradient descent-based optimization

such as discrete estimators [8, 25], or linear programming [12, 39].

2.3 Competitive effects and cannibalization
The choice model also describes the competitive effect between

items, i.e., how the availability and utility of other item options

affects choice probabilities [3, 12]. Specifically, the concept of can-

nibalization refers to how the choice probabilities of items decrease

due to a substitute’s presence [3, 31]. Each choice model predicts a

different effect in such cases. For example, under the multinomial

logit model all choice probabilities decrease by the same proportion,

whereas under the exponomial choice model, low-utility alterna-

tives lose a larger share of their choice probabilities than high-utility

alternatives. Table 1 displays the differences between these models

in an example scenario based on the one in Alptekinoğlu and Semple

[3]. Whilst both models agree in the ordering of the most probable

choices, their predicted choice probabilities differ. Consequently, in

order to accurately infer user preferences, the choice model should

match the true user behavior. Alptekinoğlu and Semple [3] argue

that the exponomial model better represents real-world cannibal-

ization patterns than the multinomial logit model, while referring

to the empirical observations by Blattberg and Wisniewski [7].

2.4 Exposure bias in recommender systems
Exposure bias occurs whenever a model’s previous recommenda-

tion affect user behavior and subsequently the logged feedback

data. Whilst different formal definitions of exposure bias exist, we

follow previous work [29, 41] that considers a model exposure bias
resistant if the exposure distribution does not affect the model’s

asymptotic rankings. This definition does not imply convergence

towards the true ranking because other biases could still occur.

Mitigating exposure bias should be a priority for all stakeholders.

It manipulates future model generations to recommend similar

items as in the past, resulting in user-model feedback loops [11,

26]. Through exposure bias, the model over-proportionally prefers

popular items [19] and can fail to cater to the special interests of user

subgroups [2]. In the long-term, its outputs to different user groups

can homogenize [33] and in multi-stakeholder environments, the

unfair exposure can translate into intra-provider unfairness [1, 16].

Krause et al. [29] demonstrated that, in addition to overexpo-
sure, which occurs when some items are exposed more often than

others, exposure bias can result from competition, which occurs

when some items tend to be exposed with popular or unpopular

alternatives. They also demonstrated that discrete choice models

can effectively reduce both forms of exposure bias. Their formal

proof for unbiasedness, however, assumed that the model matches

a ground-truth choice model. While using an inaccurate model

could impair unbiasedness, Krause et al. did not further investigate

implications for exposure bias.

3 Method: The Learned Choice Model for
Recommendation (LCM4Rec)

Our goal is to propose a choice model approach for modeling user

choices in recommender settings while avoiding assumptions about

user behavior. The non-parametric choice models discussed in Sec-

tion 2.2 prevent the need to assume users’ true choice model, and

thus appear to provide a great alternative to their parametric coun-

terparts. However, each is incompatible with state of the art rec-

ommender systems due to at least one of the following reasons:

(i) they utilize non-differentiable estimators and optimization meth-

ods; (ii) they are only applicable to the binary choice cases where

users are only presented with two options; or (iii) they are compu-

tationally complex for application on large choice sets. As a result,

the existing non-parametric methods do not provide any approach

that is relevant to current recommender systems.

In this section, we address these shortcomings directly and pro-

pose our novel non-parametric choice model: the learned choice
model for recommendation (LCM4Rec). Its core feature is a smooth

kernel density estimator that approximates the cdf 𝐹𝜖 and the pdf

𝜌𝜖 of the error distribution (Equation 3). Importantly, the estimator

can approximate any arbitrary error distribution and provide a

differentiable likelihood function for them; thereby, LCM4Rec can

approximate any possible choice model with IID error terms. More-

over, LCM4Rec can be optimized to predict observed interaction

data, which enables learning what choice model best explains user

behavior, instead of assuming this a priori. To the best of our knowl-

edge, this makes LCM4Rec the first non-parametric choice model

that is compatible with state-of-the-art recommender systems.

3.1 Learned choice model architecture
In order to approximate any arbitrary error distribution underlying

a choice model, we use kernel density estimation to construct a

family of functions F that contains approximately close members

to any possible cdf 𝐹𝜖 . Subsequently, we search for a member of F
that minimizes the negative log-likelihood of observed interaction

data (equation 4). We start our description of this procedure by

defining and discussing our choice for F . Consider the family F of

sigmoid kernel-based functions with the following shape:

𝐹𝐾 (𝑥) B
𝐾∑︁
𝑘=1

𝑤𝑘𝜎

(
𝑥 − 𝑥𝑘
ℎ𝑘

)
∈ 𝐶∞ (R), (5)

where 𝜎 is the sigmoid function, 𝐾 ∈ N, 𝑥𝑘 ∈ R, 𝑤𝑘 ∈ R>0, ℎ𝑘 ∈
R>0 and

∑𝐾
𝑘=1

𝑤𝑘 = 1. In other words, each 𝐹𝐾 is a weighted

average of sigmoid functions scaled and translated by the ℎ𝑘 and 𝑥𝑘

3
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parameters. Importantly, the derivative of 𝐹𝐾 is numerically stable:

𝜌𝐾 (𝑥) =
𝐾∑︁
𝑘=1

𝑤𝑘

ℎ𝑘
𝜎

(
𝑥 − 𝑥𝑘
ℎ𝑘

) (
1 − 𝜎

(
𝑥 − 𝑥𝑘
ℎ𝑘

))
∈ 𝐶∞ (R) . (6)

Any function 𝐹𝐾 ∈ F is strictly monotonically increasing and

bounded in the interval [0, 1]. Moreover, 𝐹𝐾 and 𝜌𝐾 (𝑥) are con-
tinuously differentiable with respect to their parameters and to

the utility estimates 𝑉𝑖 𝑗 so that we can search for optimal rep-

resentatives with regard to the empirical log-likelihood function

(Equation 4) via gradient descent.

While directly learning the parameters 𝑥𝑘 is possible, not re-

stricting them leads to local minima w.r.t. the loss function. For this

reason, we set 𝑥𝑘 to be uniformly spread out over a closed interval:

𝑥1 = −𝑙, 𝑥2 = 𝑙
(

2

𝐾 − 1

− 1

)
, . . . , 𝑥𝐾 = 𝑙, (7)

for a learnable scale parameter 𝑙 > 0. This makes optimization

much easier without restricting the number of learnable functions

when 𝑁 is large enough. To enforce 𝑤𝑘 , ℎ𝑘 , and 𝜔 to be positive,

we introduce 𝛼𝑘 ∈ R, 𝛽𝑘 ∈ R, and 𝜆 ∈ R, and define:

𝑤𝑘 B softmax(𝛼𝑘 ), ℎ𝑘 B
𝑙

𝐾
softplus(𝛽𝑘 ), 𝑙 B softplus(𝜆) . (8)

For numerical stability, we bound −0.1 < 𝛽𝑖 < 5 and 0.1 < 𝜆 < 10.

These bounding constraints ensure that the estimator does not

collapse during the first iterations when the estimated utilities

are very small. With our model of the error distribution, we still

require a model of the utilities 𝑉𝑖 𝑗 ; our definition of these applies

commonly-used learned-embedding interactions:

𝑉𝑖 𝑗 B 𝑢𝑖 · 𝑣 𝑗 + 𝑐 𝑗 , (9)

where 𝑢𝑖 ∈ R𝑚 and 𝑣 𝑗 ∈ R𝑚 with 𝑚 ∈ N are user- and item-

embeddings, and 𝑐 𝑗 is an item-specific constant as is common in

discrete choice modeling.

This completes the model architecture underlying LCM4Rec: the

error distribution of 𝜖 is modelled using a kernel density estimator

that applies a weighted average of sigmoid functions (Equation 5)

where an error term 𝜖𝑖 𝑗 is IID sampled per user-item combination;

the user utilities are modelled by the dot-product between two

learned embeddings and an item-specific constant (Equation 9); and

the final utility is simply the sum of these:𝑈𝑖 𝑗 = 𝑉𝑖 𝑗 +𝜖𝑖 𝑗 . Recall that
choice models assume the item with the highest utility is chosen

(see Section 2).Whilst our LCM4Rec is extremely expressive and can

capture any arbitrary error distribution, as we show below, we have

restricted it by assuming the error terms 𝜖𝑖 𝑗 are IID independent.

We note that this restriction rules out some choice models such as

the nested logit model [40]; we leave the extension of our model to

the more general non-IID setting as future work.

Finally, we show that LCM4Rec can approximate any choice

model with IID error terms. Specifically, we show that for any cdf

𝐹 , there always exists a member 𝐹 ∈ F that is arbitrarily close to 𝐹 .

Theorem 1. Let 𝐹 be a continuous, strictly monotone cdf with
finite support on a closed interval 𝑆 . Let F be defined as above. Then,
for all 𝜖 > 0, there exists a member 𝐹 ∈ F such that

|𝐹 (𝑥) − 𝐹 (𝑥) | < 𝜖, ∀𝑥 ∈ 𝑆. (10)

Proof. Because 𝐹 operates on a closed interval, it is uniformly

continuous. We can therefore find 𝛿 > 0 such that

|𝐹 (𝑥) − 𝐹 (𝑦) | <
𝜖

4

∀𝑥,𝑦 ∈ 𝑆 : |𝑥 − 𝑦 | < 𝛿. (11)

Based on equation 5, set the number of kernels 𝐾 and the width 𝜆

large enough so that any 𝑥 ∈ 𝑆 is within close range of two design

points, i.e., ∃𝑘1, 𝑘2 ≤ 𝐾 : 𝑥𝑘1 < 𝑥 < 𝑥𝑘2 with 0 < 𝑥𝑘2 − 𝑥𝑘1 < 𝛿 . Set
the weights𝑤𝑘 so that

∑𝑘
𝑙
𝑤𝑙 = 𝐹 (𝑥𝑘 ), ∀𝑘 ≤ 𝐾 . Then,

𝐹𝐾 (𝑥𝑘 ) = 𝐹 (𝑥𝑘−1) +
𝐹 (𝑥𝑘 ) − 𝐹 (𝑥𝑘−1)

2︸                ︷︷                ︸
>0

+𝜉 ≤ 𝐹 (𝑥𝑘 ) ∀2 ≤ 𝑘 ≤ 𝐾.

(12)

where 𝜉 is a small error term that results from the sigmoids that

are placed around the other design points 𝑥𝑘 ′ with 𝑘
′ ≠ 𝑘 . We can

ignore 𝜉 as limℎ→0
𝜉 = 0. Hence,

𝐹 (𝑥𝑘−1) ≤ 𝐹𝐾 (𝑥𝑘 ) ≤ 𝐹 (𝑥𝑘 ) ∀ 2 ≤ 𝑘 ≤ 𝐾 and ℎ ≪ 1. (13)

For 𝑥 ∈ 𝑆 and its nearest point 𝑘∗ B argmax

𝑘≤𝐾
(𝑥𝑘 ≤ 𝑥) we get:

|𝐹𝐾 (𝑥) − 𝐹 (𝑥) | (14)

≤
△-ineq.

|𝐹𝐾 (𝑥) − 𝐹𝐾 (𝑥𝑘∗ ) | + |𝐹𝐾 (𝑥𝑘∗ ) − 𝐹 (𝑥𝑘∗ ) | + |𝐹 (𝑥𝑘∗ ) − 𝐹 (𝑥) |

≤
(13)

|𝐹 (𝑥𝑘∗+1)−𝐹 (𝑥𝑘∗−1) |+ |𝐹 (𝑥𝑘∗+1)−𝐹 (𝑥𝑘∗) |+ |𝐹 (𝑥𝑘∗)−𝐹 (𝑥𝑘∗−1) |

≤
△-ineq.

2|𝐹 (𝑥𝑘∗ ) − 𝐹 (𝑥𝑘∗−1) | + 2|𝐹 (𝑥𝑘∗+1) − 𝐹 (𝑥𝑘∗ ) | < 𝜖.

□

Therefore, for any continuous, strictlymonotone cdf 𝐹 with bounded

support, the function family F contains an arbitrarily good approx-

imator 𝐹 .

3.2 Optimizing for the most likely choice model
Having constructed the family of functions F , we now introduce

a method for finding a good candidate 𝐹𝐾 ∈ F for approximating

𝐹𝜖 , based on 𝑁 observed choices {(𝑖𝑛, 𝑗𝑛,𝐶𝑛)}𝑛≤𝑁 ⊆ 𝐼 × 𝐽 × C
of users, chosen items, and choice sets. Importantly, any 𝐹𝐾 is

differentiable with respect to its parameters 𝛼𝑘 , 𝛽𝑘 , 𝜆, and the user-

and item-parameters𝑢𝑖 𝑣 𝑗 , and 𝑐 𝑗 . Accordingly, we propose to learn

all model parameters by optimizing the negative log-likelihood

(NLL) function in Equation 4 via gradient descent.

However, the main challenge to this approach is that we lack a

closed form for the integrals in Equation 4, and thus, we cannot

evaluate them directly. As a solution, we propose to approximate

its gradient via Monte Carlo integration. Unfortunately, there is

no closed form solution for the inverse cdf of 𝐹𝐾 , which means

we cannot sample from it directly. Instead, we use the fact that

𝐹𝐾 is a weighted average of sigmoid cdfs from which samples can

be drawn directly. Specifically, for each observation 𝑛 and kernel

𝑘 ∈ {1, . . . , 𝐾} (cf. Equation 5), we draw 𝑆 samples; for observation

𝑛 and kernel 𝑘 , sample number 𝑠 is generated through the inverse

cdf of the sigmoid kernel:

𝑒𝑛,𝑘,𝑠 B 𝑥𝑘 + ℎ𝑘 log
(
𝑢𝑛,𝑘,𝑠

1 − 𝑢𝑛,𝑘,𝑠

)
, 𝑢𝑛,𝑘,𝑠 ∼ U(0, 1) . (15)

4



A Non-Parametric Choice Model That Learns How Users Choose Between Recommended Options RecSys ’25, September 22–26, 2025, Prague, Czech Republic

With these samples, the choice probability can be approximated by:∫
𝜌𝐾

(
𝑒𝑖𝑛 𝑗𝑛

) ∏
𝑗 ′∈𝐶𝑛, 𝑗

′≠𝑗𝑛

𝐹𝐾
(
𝑉𝑖𝑛 𝑗𝑛 + 𝑒𝑖𝑛 𝑗𝑛 −𝑉𝑖𝑛 𝑗 ′

)
𝑑𝑒𝑖𝑛 𝑗𝑛

=

∫ 𝐾∑︁
𝑘=1

𝑤𝑘

ℎ𝑘
𝜎

(
𝑒𝑖𝑛 𝑗𝑛 − 𝑥𝑘

ℎ𝑘

) (
1 − 𝜎

(
𝑒𝑖𝑛 𝑗𝑛 − 𝑥𝑘

ℎ𝑘

))
·

∏
𝑗 ′∈𝐶𝑛, 𝑗

′≠𝑗𝑛

𝐹𝐾
(
𝑉𝑖𝑛 𝑗𝑛 + 𝑒𝑖𝑛 𝑗𝑛 −𝑉𝑖𝑛 𝑗 ′

)
𝑑𝑒𝑖𝑛 𝑗𝑛 (16)

≈ 1

𝑆

𝑆∑︁
𝑠=1

𝐾∑︁
𝑘=1

𝑤𝑘

∏
𝑗 ′∈𝐶𝑛, 𝑗

′≠𝑗𝑛

𝐹𝐾

(
𝑉𝑖𝑛 𝑗𝑛 + 𝑒𝑛,𝑘,𝑠 −𝑉𝑖𝑛 𝑗 ′

)
︸                                                    ︷︷                                                    ︸

C𝑃𝑛𝑠

C 𝑃𝑛 .

Note that due to Jensen’s inequality, taking the logarithm in Equa-

tion 16 introduces bias which we correct for through third-order

Taylor expansion as in [17]. This leads to our final approximated

negative log-likelihood function:

ˆL B −
𝑁∑︁
𝑛

log

(
𝑃𝑛

)
+

∑𝑆
𝑠=1 (𝑃𝑛𝑠 − 𝑃𝑛)2

2𝑆 (𝑆 − 1)𝑃2𝑛
−

∑𝑆
𝑠=1 (𝑃𝑛𝑠 − 𝑃𝑛)3

3𝑆 (𝑆 − 1) (𝑆 − 2)𝑃3𝑛
(17)

Finally, we can minimize the approximated loss
ˆL through gradient

descent to obtain an estimate for 𝐹𝜖 . Thereby, LCM4Rec can poten-

tially recover any underlying choice model with IID error terms

from observation data, without further a priori assumptions.

3.3 Computational complexity
We apply a straightforward computation of the loss in equation 17

which has a computational complexity of O
(
𝐾2𝑁𝑆 |𝐶 |

)
. The qua-

dratic scaling in 𝐾 results from our sampling strategy; as described

above, we must sample from the pdf 𝜌𝐾 in a way that is differen-

tiable with respect to the weights𝑤𝑘 . As a solution, we conveniently

generate samples per kernel, resulting in the sums over kernels and

samples-per-kernel in equation 17. In practice, we see no benefit in

increasing the resolution beyond 𝐾 = 10, because very fine grained

peaks in the error function—if existent—barely affect choice proba-

bilities. Thus, since K remains small, the quadratic complexity is

not a significant problem in practice. Alternatively, linear scaling in

𝐾 can be achieved by sampling uniformly over the support 𝜌𝐾 as

in vanilla Monte-Carlo. We initially implemented this solution but

found it less efficient for small values of 𝐾 than our straightforward

computation.

3.4 Identification and regularization
Finally, we tackle a challenge in the prevention of overfitting our

method: The variability of 𝑙 and 𝑐 𝑗 renders L2-regularization on

the user- and item-embeddings 𝑢𝑖 and 𝑣 𝑗 ineffective, because for

any decrease in 𝑢𝑖 or 𝑣 𝑗 , the unregularized state can be recon-

structed by shrinking 𝑙 , ℎ𝑘 and 𝑐 𝑗 accordingly. Consequentially,

L2-regularization would lead to a collapse of 𝜌𝐾 . Thus, in order to

prevent overfitting, we scale the item-specific constants 𝑐 𝑗 into the

interval [0, 1] after every gradient update. This forces the width

parameter 𝑙 and the utilities to stay within the same scale as 𝑐 𝑗 .
4

4 Experimental Setup
We perform two experiments to answer three research questions.

A key property of LCM4Rec is that it does not assume what error

distribution underlies user choices, thus its accuracy should not

depend on them. Accordingly, our first research question is:

RQ1 Does LCM4Rec return accurate and robust choice probabilities
under different true choice models, i.e., different error distributions?

However, accurate choice probabilities do not necessarily indicate

the correct choice model is identified, since an incorrect model can

still overfit, and thereby, (partially) compensate for an incorrect er-

ror distribution. To address this possibility, we also directly validate

whether LCM4Rec finds the correct choice model:

RQ2 Can LCM4Rec accurately recover the true choice model from
interaction data?

Accurate choice models are more robust to exposure bias, especially

from item-co-exposure [29], due to better modeling competition

between items. Thus, our third research question concerns:

RQ3 Is LCM4Rec more robust to exposure bias than parametric choice
models?

To pursue our research questions and understand the importance

of assumptions about user behavior, our experiments compare our

LCM4Rec to parametric alternatives, in cases where the paramet-

ric models and the correct error distribution match, and in cases

where they do not match. Our data and implementation are publicly

available at https://github.com/krauthor/LCM4Rec_RecSys2025.

4.1 Experiment 1: Accuracy and robustness
To assess RQ1 and RQ2, we apply a setup similar to that of Krause

et al. [29], with the important difference that we vary the choice

model underlying interactions.

Dataset. Our first generated dataset consists of the choices of 500

users on 500 items, where every user performed up to 500 choices

from uniformly random subsets of four items. Users could interact

with the same item multiple times. We chose the large number

of interactions per users to investigate systematic, asymptotic er-

rors that result from learning with inaccurate choice models. Each

user and item are represented by an embedding, 𝑢𝑖 , 𝑣 𝑗 ∈ R3 re-

spectively, sampled uniformly from the unit sphere of radius

√
2.

Item-specific constants 𝑐 𝑗 ∈ R are sampled from the uniform distri-

bution:U(0, 1). Final utilities are𝑈𝑖 𝑗 B 𝑢𝑖 ·𝑣 𝑗 +𝑐 𝑗 +𝜖𝑖 𝑗 (cf. equation
9).

We use three different error distributions, and thereby differ-

ent choice models, to generate the 𝜖 error terms: (i) Gumbel with
𝜖 ∼ Gumbel(0, 0.75); (ii) Signed exponential with 𝜖 ∼ −Exponen-
tial(0, 0.75); (iii) Gaussian Mixture with 𝜖 = 1

3
𝑁1 + 2

3
𝑁2, where

𝑁1 ∼ N(−0.75, 0.25) and 𝑁2 ∼ N(0.75, 0.25). The Gumbel distri-

bution was chosen to represent non-conservative choice behavior,

whereas the signed exponential distribution represents conserva-

tive choice behavior. Lastly, the Gaussian mixture distribution is

4
Fixing the scale parameter 𝑙 does not suffice as themodel could still make the estimated

distribution infinitely thin by placing the weight on only a few design points.

5
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included because it lacks a corresponding parametric model. Thus,

its output can only be fit by non-parametric models such as ours.

To properly evaluate choice models, it is crucial that the train-

ing set contains no user-item interactions that are later used for

evaluation, including negative interactions. We follow Krause et al.

[29] and construct the training and validation datasets based on the

interactions of a subset of users 𝑈Train ⊂ 𝑈 on all items together

with the interactions of the remaining users 𝑈
Eval

= 𝑈 \ 𝑈Train

with half of all items 𝐽Train ⊂ 𝐽 . The test set was constructed based

on the interactions of 𝑈
Eval

with the remaining half of all items

𝐽
Eval

= 𝐽 \ 𝐽Train.
Models. The following models are included in our comparison:

• The multinomial logit model (MNL) [40] is the de-facto stan-

dard discrete choice model [40]. It assumes Gumbel-distributed
errors. Its choice probabilities equal a softmax over the determin-

istic utilities with non-conservative cannibalisation patterns.

• The exponomial model (ENL) [3] assumes that the random

errors are generated by a signed exponential distribution with

very conservative cannibalization patterns.

• The binary logit model (BL) [40] is the univariate variant of
the MNL model. It minimizes a logistic loss over all observed

positive and negative interactions individually. Thus, it ignores

any possible competitive effects of alternative options.

• The binary cross-entropy (BCE) with negative sampling
is a basic matrix factorization recommendation model that is

equivalent to the BL model except that it samples the negative

labels from the item corpus.

• The generalized binary cross-entropy loss (gBCE) [35] is
designed to capture confidence scores more accurately than the

BCE loss and the MNL with negative sampling.

• Our learned choice model for recommendation (LCM4Rec)
features non-parametric kernel density estimation to infer the

correct choice probabilities and cannibalization pattern from the

data, uniquely, without assuming an error distribution a priori.

Hyper-parameters. We set the embedding size for each model to

match the size used in the generation process. Learning rates and

optimizer choices are determined via grid-search on the Gumbel

distributed data and applied to all distributions. For LCM4Rec we set

𝐾 = 5, 𝑆 = 5, and for gBCE we set 𝑡 = 1. We tried many values of K

without running into any computational constraints, optimization

instability, or notable overfitting. Values larger than 𝐾 = 5 did not

result in better predictive accuracy, thus we chose this value to

show that a small number of kernels suffice and improvements can

be achieved at low computational costs.

Evaluation.Tomeasure the accuracy of the choice probabilities, we

use the Kullback-Leibler divergence (KLD) on the distributions over

the entire evaluation item set 𝐽
Eval

. These distributions represent the

users’ preferences if they could choose from the entire evaluation

corpus and would be relevant during inference [20]. We measure

predictive performance in the forms of the nDCG, negative log-

likelihood (NLL), and accuracy (Acc) for the choices among all

alternatives in the respective choice sets on the test set. For the

univariate models we compute the probability of choosing an item

from a choice set as the probability of choosing only that item

and rejecting the others. All results are means over 100 simulation

repetitions. Bootstrapped one-sided t-tests determine statistical

significance of performance differences to the next worse value.

4.2 Experiment 2: Correcting for exposure bias
To analyze how the models react to exposure bias for RQ3, we eval-
uate their learned behavior under different exposure distributions.

Dataset.Our approach tomeasuring the effect of exposure is to take

a small item subset 𝐽Bias ⊂ 𝐽 , vary its exposure, and subsequently

see whether the items are treated differently as a result. Again,

we prevent information leakage by avoiding interactions in the

training set with user-item pairs that are also used during evaluation

(see Section 4.1). The three error distributions are reused: Gumbel,

signed exponential and Gaussian Mixture, for each we generate

two pairs of two datasets with different exposure distributions: 𝑂 ′

and 𝑂 ′′
. Subsequently, by comparing the pairs of learned models

on the test set, we can see whether the change in exposure results

in a difference in the learned choice models.

Our pairs of exposure distributions follow those proposed by

Krause et al. [29], to capture different kinds of exposure bias. The

first pair considers the effect of non-uniform exposure frequencies,
i.e., some items getting more exposure than others. To generate

𝑂 ′
, all items are presented equally often; whereas for 𝑂 ′′

, we first

randomly select 25 items and then include at least one of them in

every second choice set, resulting in 1.9 times as much exposure per

item. The second pair considers bias due to non-uniform competition,
i.e., the effect of being presented together with more or less popular

alternatives. For this pair, 25 items are randomly selected again,

to generate 𝑂 ′
these are only presented together with the top 20

percentmost-popular items, for𝑂 ′′
they are only presentedwith the

bottom 20 percent most popular items (thus the least-popular items).

In both cases, if the choice model is robust to exposure bias, the

learned preferences for the selection of 25 items should be the same

for𝑂 ′
and𝑂 ′′

in expectation. Therefore, large differences indicate a

substantial effect from exposure, and thus, susceptibility to exposure

bias, and vice-versa, small differences indicate robustness.

The number of users, items, and choices per user, the choice set

size, the embeddings, and the error distributions are the same as

for the first experiment (Section 4.1). The training, validation and

test set were also constructed in the same way.

Models in comparison. For the second experiment, we include

the MNL, ENL, and LCM4Rec models. The univariate models are

excluded because previous work has already shown them to be

more vulnerable to exposure bias than MNL and ENL [29].

Hyper-parameters. We employ the same hyper-parameters as

the previous experiment except that we apply the SGD optimizer

to ENL. Preliminary experiments showed that, for ENL, the Adam

optimizer is more sensitive to exposure bias from non-uniform

competition without significantly improving accuracy.

Evaluation. Our evaluation procedure also follows Krause et al.

[29]. To measure the effect of the simulated exposure bias we con-

sider the average rank of the selection of items as predicted by a

model trained on𝑂 ′
or𝑂 ′′

. Our metric is the difference in predicted

ranks for each pair of equivalent models where one was trained on

𝑂 ′
and the other on𝑂 ′′

. Thereby, this difference can show whether
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the exposure bias, i.e., non-uniform exposure or non-uniform com-

petition, can affect the preferences inferred by the choice models.

All reported results are averages over 100 simulation repetitions.

4.3 Assumptions and possible extensions
While we keep modeling assumptions general, several specifica-

tions common in real world data can be made: First, we generated

500 choices per user with 4 options per choice, which is realistic in

only some scenarios. Non-parametric estimators typically converge

slower than parametric ones so that an evaluation on more sparse

data sets would be of interest. Second, we sampled choice sets uni-

formly. Real-world data often exhibits a long-tail item distribution

and how such a distribution could affect our model’s robustness

remains open. Likewise, we sampled embeddings uniformly while

a long-tailed utility distribution could be more realistic. Third, we

assumed knowledge over users’ choice sets. The sets’ compositions

could be partially unobserved in real-world applications as fully

tracking observed options can be complex and as users can discover

and interact with items outside of the observable domain. To ac-

count for such behavior one can introduce a no-choice alternative
that represents the decision not to choose any presented option

[18, 40]. Moreover, padding and cropping allows processing choice

sets of varying sizes.

5 Results and Discussion
5.1 Accuracy and robustness
Our discussion starts by considering RQ1: whether LCM4Rec re-

turns accurate and robust choice probabilities under different true

choice models. Table 2 displays the performance of all models in

the comparison under three different true choice models.

We see that two of the univariate models BCE and gBCE consis-

tently achieve the worst performance across all error distributions

and metrics (except ENL has worse KLD under Gumbel). This is un-

surprising, since univariate models are not designed for the choice

model setting and ignore the effect of competition.

Surprisingly, the simplest univariate model, BL, consistently

outperforms BCE and gBCE. In particular, under the Gumbel distri-

bution, BL reaches the highest performance and even outperforms

the multivariate ENL on all metrics except nDCG. BL is the univari-

ate variant of MNL which assumes a Gumbel distribution, which

may explain why BL performs so well in this setting. Under the

other distributions, BL no longer reaches the highest performance

for KLD, NLL and Acc. It seems that, whilst overall the multivariate

models are more accurate in our setting, univariate models can still

benefit from matching the true error distribution.

Next we consider the parametric choice models: MNL and ENL.

Clearly, we observe that eachmodel has the best performance across

all metrics when their assumed error distribution matches the true

distribution, i.e., Gumbel for MNL and signed exponential for ENL.

This is expected, since the structure of the fitted model matches the

true model structure. Surprisingly, MNL and ENL always reach the

highest observed nDCG score and are close the highest accuracy,

regardless of the true error distribution. The NLL is more affected

but differences are still quite marginal: always below 0.08 of the best

NLL. However, for KLD this is not the case: MNL and ENL have

substantially worse KLD when their assumed error distribution

Table 2: Inference performance and robustness. The correctly
specified models are highlighted with † and were expected to
perform best. The KLD scores refer to the choice probabilities
from the entire item corpus 𝐽𝐵 . Best results in bold font,
second best underlined. Significantly better scores than the
next worse models’ follow ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

KLD ↓ NLL ↓ nDCG ↑ Acc ↑

G
u
m
b
e
l

BL 0.028∗∗∗ 1.184∗∗∗ 0.996∗∗∗ 0.477∗∗∗

BCE 0.122
∗∗∗

1.242
∗∗∗

0.983
∗∗∗

0.451
∗∗∗

gBCE 0.163
∗∗∗

1.272 0.967 0.415

MNL
† 0.028∗∗∗ 1.184∗∗∗ 0.996∗∗∗ 0.477∗∗∗

ENL 7.952 1.188
∗∗∗ 0.996∗∗∗ 0.475

∗∗∗

LCM4Rec 0.085
∗∗∗ 1.184∗∗∗ 0.996∗∗∗ 0.477∗∗∗

S
i
g
n
e
d

E
x
p
o
n
e
n
t
i
a
l

BL 1.574
∗∗∗

1.063 0.997∗ 0.538
∗∗∗

BCE 2.310
∗∗∗

1.146
∗∗∗

0.986
∗∗∗

0.510
∗∗∗

gBCE 2.386 1.183 0.974 0.474

MNL 1.491
∗∗∗

1.062
∗ 0.997∗∗∗ 0.539∗

ENL
† 0.345∗∗∗ 1.056∗∗∗ 0.997∗∗∗ 0.539∗∗

LCM4Rec 0.459
∗∗∗ 1.056∗∗∗ 0.997∗∗∗ 0.539∗

G
a
u
s
s
i
a
n

M
i
x
t
u
r
e

BL 1.166
∗∗∗

1.127
∗∗∗ 0.997∗∗∗ 0.515

∗∗∗

BCE 1.815
∗∗∗

1.199
∗∗∗

0.985
∗∗∗

0.482
∗∗∗

gBCE 1.881 1.231 0.971 0.446

MNL 1.108
∗∗∗

1.126 0.997∗∗∗ 0.515
∗∗∗

ENL 0.625
∗∗∗

1.130
∗∗∗ 0.997∗∗∗ 0.514

∗∗∗

LCM4Rec 0.337∗∗∗ 1.123∗∗∗ 0.997∗∗∗ 0.516

Table 3: Mean KLDs and standard deviation between the true
and modeled error distributions. †Correctly specified model.

Gumbel Sign. Exp. Gauss. Mix.

MNL 0.00
†

1.25 0.43

ENL 1.19 0.00
†

0.87

LCM4Rec (ours) 0.13 ± 0.07 0.26 ± 0.05 0.31 ± 0.18

is wrong. It thus appears that the MNL and ENL are only able to

compensate for their incorrect choice model assumption for the

NLL, nDCG, and accuracy metrics. But this results in substantial

degraded match between the learned and true preferences in terms

of KLD. Importantly, we note that our dataset generation is ideal-

ized as choice sets are uniform random samples, potentially, this

compensation does not occur in less ideal settings.

Finally, we discuss our non-parametric multivariate LCM4Rec

model which is the only model that estimates the error distribution.

Strikingly, LCM4Rec reaches the best observed performance for the

NLL, nDCG and Acc metrics across all error distributions. Moreover,

it has the best KLD under the Gaussian mixture distribution and

second best for the signed exponential and Gumbel distributions.

Therefore, it appears LCM4Rec is only outperformed by parametric

models when they correctly assume the true choice model, where

7
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Figure 1: Estimated versus true cdfs and pdfs and KLD score between the mean estimate and the true distribution, smoothed to
avoid null sets. Estimates are shifted to minimize the KLD to the true distribution (translation invariance in choice models).

the difference in KLD is still limited. In the case of the Gaussian

mixture, where there is no matching choice model, LCM4Rec has

significantly better performance in terms of KLD and NLL than all

other models. As a result, LCM4Rec is the only model that has con-

sistent good performance across all distributions and metrics. We

attribute this to the fact that LCM4Rec infers the most likely error

distribution, avoiding assumptions about the true choice model.

Therefore, we can answer RQ1 as follows: LCM4Rec is the only

model that can accurately predict choice probabilities regardless

of the true error distribution. Thereby it is robust to the true user

choice model and the safest choice when the exact model of user

behavior is unknown. Additionally, our results indicate that the

robustness of LCM4Rec does not come with a trade-off in predictive

performance, as it reaches competitive performance in all metrics.

Lastly, we note that all our discrete choice models scored compa-

rably well in terms of nDCG. Thus, it appears the underlying choice

model does not seem to critically affect ranking performance in our

first experiment setting. Moreover, performance of BL shows that,

under uniform exposure, exact information on item co-exposure

and choice sets is not even needed for ranking purposes. We believe

that this is an artifact of our setup where item exposure is uniform

(in expectation), hence our second experiment concerns a setting

where this is not the case (see Section 5.3).

5.2 Learning the choice model
For RQ2, we evaluate whether LCM4Rec can accurately recover

the true error distribution. Figure 1 displays the error distributions’

cdfs and pdfs in our experimental setting and LCM4Rec’s estimates.

Upon visual inspection, the estimates accurately approximate the

error distributions. The estimator, which learns the cdf, consistently

matches the strongest cdf. Its derivatives also follow the true pdfs’

shapes. We observe some oscillation, especially when the error is

signed exponential, a likely artifact from the resolution (𝐾 = 5)

of our kernel density estimator. Nevertheless, LCM4Rec correctly

identifies Gumbel’s right skew, signed exponential’s left skew, and

the Gaussian mixture’s two columns. The results in Table 2 also

reveal that the estimates produce competitive predictive perfor-

mance (see Section 5.1). To quantify the match, Table 3 shows the

Table 4: Exposure bias. Values show how many ranks items
are ranked higher due to overexposure/competition, includ-
ing 95%-CIs. Best (lowest abs.) bold, second best underlined.

𝜖 Model Overexposure Competition

G
u
m
b
e
l MNL -0.427 ± .401 -1.314 ± .427

ENL -0.418 ± .461 1.701 ± .486

LCM4Rec (ours) -0.258 ± .425 -0.000 ± .448

S
i
g
n
.
E
x
p
.

MNL -0.784 ± .311 -6.423 ± .329

ENL -0.581 ± .321 -2.021 ± .337

LCM4Rec (ours) -0.212 ± .351 -1.571 ± .359

G
a
u
s
s
.
M
i
x
.

MNL -0.247 ± .345 -2.856 ± .381

ENL -0.100 ± .378 0.294 ± .407

LCM4Rec (ours) -0.026 ± .363 0.118 ± .389

mean KLD scores between the true, the assumed, and the estimated

distributions. LCM4Rec scores low on KLD and much lower than

MNL and ENL when their assumed distribution is incorrect. Hence,

we affirm RQ2: LCM4Rec can accurately recover the true error

distribution’s shape and learn the true user choice model.

5.3 Exposure bias resistance
Finally, we turn to RQ3 and compare the robustness to exposure

bias of LCM4Rec with that of parametric choice models. Table 4

shows how many additional ranks items obtain on average in the

model predicted ranking of items when they are (i) overexposed

versus uniformly exposed; or (ii) presented with popular alterna-

tives versus unpopular alternatives. Additionally, Figure 2 displays

the difference in observed and true item ranks.

Our results indicate that the effect of (i) overexposure on the

behavior of all three models is limited: Figure 2 shows differences

are close to zero for all true item ranks. This is also visible in Table 4

which also reveals that when considering the confidence intervals

of the results, the differences between the models do not appear
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Figure 2: Exposure bias w.r.t. items’ mean true ranks. Regression curves and CIs based on LOWESS [13] and bootstrapping.

meaningful. Surprisingly, LCM4Rec is less affected by bias than

both other models, even when their assumed error distribution

is correct. Nevertheless, due to the variance in these results, we

conclude that all models appear similarly robust to overexposure.

The effect of competition results in much larger differences in

Table 4. The ENL model under Gumbel and the MNL model under

signed exponential and Gaussian mixture are heavily affected by

bias. Figure 2 reveals that more preferred items are affected the

most, the bias of the conservative ENL places these items lower in

the ranking, while the non-conservative MNL places them higher.

Again, LCM4Rec is the least affected model across all distributions,

surprisingly, even when the parametric models match the true

distribution. We speculate that inferring the error distribution and

user preferences simultaneously leads to more robustness.

To conclude, we answer RQ3 as follows: Whilst all three choice

models appear robust to exposure bias from overexposure, the

parametric models can be affected exposure bias from competition

depending on what the users’ choice model is. In contrast, our

results indicate LCM4Rec is the only model that is robust to both

types of bias regardless of what the true users’ choice model is.

6 Conclusion
Our work concerns the optimization of multivariate choice models

that predict how users choose from a set of recommended items.

Specifically, we addressed the limitation that existing parametric

choice models require a priori assumptions about the error distribu-

tion that characterizes how users make choices; existing parametric

choice models learn user preferences but not how choices are made.

Moreover, our experimental results reveal that when their assump-

tions do not match the true user behavior, they return inaccurate

choice probabilities and are susceptible to exposure bias.

In response, we propose LCM4Rec, the first non-parametric mul-

tivariate model for recommendation. In contrast with parametric

models, LCM4Rec simultaneously infers the most likely error distri-

bution and user preferences. Thereby, it both learns what users pre-
fer and how they choose. It optimizes a kernel density estimator that

can approximate any distribution to find the most likely error dis-

tribution underlying the users’ choice model. As a result, LCM4Rec

alleviates the need to make assumptions about the correct users’

choice model. Our experimental results show that LCM4Rec suc-

cessfully recovers the correct choice model from observed user in-

teractions. Furthermore, our results indicate that— across all tested

users’ choice models —only LCM4Rec has consistent competitive

predictive performance and is robust to exposure bias coming from

competition. Therefore, we conclude that LCM4Rec provides the

most robust way to learn user preferences from their observed

choices and model users’ choice behavior, while avoiding a priori

assumptions about user behavior.

Our work presents promising directions for future work: LCM4-

Rec assumes errors are IID, a future extension could tackle the

non-IID case. Finally, our experiments were limited to synthetic

data but LCM4Rec has the potential to find the most likely real-

world user choice model from real-world choice set data.
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