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Abstract
Learning to rank (LTR) methods generally assume that each docu-

ment in a top-𝐾 ranking is presented in an equal format. However,

previous work has shown that users’ perceptions of relevance can

be changed by varying presentations, i.e., allocating more vertical

space to some documents to provide additional textual or image

information. Furthermore, presentation length can also redirect

attention, as users are more likely to notice longer presentations

when scrolling through results. Deciding on the document presen-

tation lengths in a fixed vertical space ranking is an important

problem that has not been addressed by existing LTR methods.

We address this gap by introducing the variable presentation

length ranking task, where simultaneously the ordering of doc-

uments and their presentation length is decided. Despite being a

generalization of standard ranking, we show that this setting brings

significant new challenges: Firstly, the probability ranking principle

no longer applies to this setting, and secondly, the problem cannot

be divided into separate ordering and length selection tasks.

We therefore propose VLPL – a new family of Plackett-Luce

list-wise gradient estimation methods for the joint optimization of

document ordering and lengths. Our semi-synthetic experiments

show that VLPL can effectively balance the expected exposure and

attractiveness of all documents, achieving the best performance

across different ranking settings. Furthermore, we observe that even

simple length-aware methods can achieve significant performance

improvements over fixed-length models. Altogether, our theoretical

and empirical results highlight the importance and difficulties of

combining document presentation with LTR.
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Figure 1: Rankings with variable presentation length. Com-
pared to SERP 1, SERP 2 presents the second item with more
vertical space (length), allowing more information to be dis-
played. In SERP 3, the second and third item are both pre-
sented with less vertical space, resulting in less information
for each, but allowing an additional item to be displayed.

1 Introduction
Ranking models generally aim to identify the most relevant doc-

uments from a set of candidates and present them to the user

in the order of decreasing relevance on a search engine result

page (SERP) [20]. However, the presentation of individual doc-

uments within a SERP is rarely considered when choosing the

document ordering, with the documents usually simply modeled

as fixed units of information or relevance. Nevertheless, in many

cases the platforms can choose how each document is presented to

the user, which in turn affects how the user perceives and interacts

with those documents. We call this setting where both the order of

the documents as well as their presentation lengths are chosen as

the variable document presentation length setting – see Figure 1 for

an example. This setting is characterized by the trade-off between

presenting more information for displayed documents – potentially

making them more attractive – or displaying more documents on

the SERP – potentially including more relevant results.

Earlier research has shown that increasing the size of individual

SERP results to include additional textual information may make

the user more likely to click through to the full document [25],

whilst shorter results may discourage the users from clicking [19].

Similarly, in e-commerce, adding images and product details has

also been found to increase the engagement with those items [2, 41].

Making a search result larger may reduce the probability that a

user will miss it when browsing [10], and thereby, alleviate some

position bias on that result [24]. However, as noted by Pathak

et al. [30, 31], increasing the vertical size of some results gener-

ally means that fewer results fit on the SERP [19]. In general, in-

creasing the presentation size of an individual retrieved document

also means that the documents below it are pushed down by the
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same amount. This, in turn, may make them less likely to be ob-

served by the user and lead to an increase in the effects of position

bias [9, 16, 17]. Hence this setting requires a balancing of document

ordering and their presentation lengths. To the best of our knowl-

edge, no existing method can simultaneously optimize a ranking

and variable presentation lengths.

In this work, we formally introduce and study the variable docu-

ment presentation length setting. Our analysis reveals challenges

that are not present in standard ranking: most importantly, the

probability ranking principle (PRP) does not apply, and as a result,

the optimal placement strategy cannot be separated into indepen-

dent ranking and length-selection strategies. In order to tackle this

problem, we extend the Plackett-Luce (PL) ranking approach to

optimize both the order and presentation lengths of documents.

Our novel model, the variable length Plackett-Luce (VLPL) distribu-

tion 𝜋VLPL, represents each choice as a document placement paired

with a specific length. We build on the PL-Rank family of gradient

estimators [26, 27] to introduce the novel VLPL−1 and VLPL−2
estimators. These efficiently estimate the gradient of 𝜋VLPL, with

VLPL−2 having a higher sample-efficiency. Moreover, as we show

that the gradient estimation can be leveraged during model training

as either in-processing or post-processing [6], in total we propose

four distinct methods for jointly optimizing ordering and length.

Our semi-synthetic experiments demonstrate that our approaches

achieve a large and consistent improvement over baseline methods.

Overall, our findings underscore the need for ranking optimization

methods with a more holistic view of result presentation that goes

beyond the “ten blue links", as some links may look very different

from others, and perhaps there should not be ten.

2 Related Work
Learning to rank (LTR) models aim to identify the most relevant

documents and present them to the user, most commonly in the

form of a ranked list. This is usually done by scoring each document

and then sorting the documents based on their scores. According

to the PRP [34], a scoring function should reflect the probability of

each document being relevant to the user to produce optimal rank-

ings. In recent years, the Plackett-Luce family of list-wise methods

[32] have gained popularity, owing to their simplicity, robustness

and interpretability [3, 26, 27]. Importantly, however, these and

other widely used ranking models [3–5, 12, 14, 26, 27, 38, 40] only

view ranking from the lens of document ordering, not concerning

themselves with any further choices about document presentation.

A large body of work has shown that result presentation may

significantly affect how users perceive and interact with each doc-

ument. Maxwell et al. [25] observed that users are more likely to

interact with a result on a SERP if it is presented with a longer snip-

pet. This is also consistent with the observations of Kohavi [19],

who found that allocating the same amount of screen space to fewer

but larger and more interactive ads led to significant increases in

user engagement and conversions. Marcos et al. [24] reported that

lower-ranking results with larger and more interactive snippets

are noticed earlier and for longer compared to other snippets, with

snippets containing images being particularly salient. You et al. [41]

also found that the image of a SERP result may have a drastic impact

on how likely the user is to find the document attractive [1, 8, 42].

On the other hand, the number of documents visible to the user

at a given time also significantly affects user interactions [9, 11, 14,

16, 17, 28, 35, 36]. Kelly and Azzopardi [16] showed that having

more results on each SERP leads to users interacting with more

documents, whilst Kim et al. [17] found that the need to scroll, in

contrast with pagination, significantly reduces the speed at which

the users are able to browse the result list. Taken together, the above

findings suggest that decreasing snippet length, which allows to

include more results on a single SERP, may lead to a higher number

of interactions with the full ranking. Furthermore, the above results

are also consistent with the findings of Joachims [14] on position

bias [9, 10, 21], who saw that the probability that the user observes

a document decreases with the position of that document, with

particularly significant drops after the end of each page.

Our work is most related to that of Mao et al. [23] and Pathak

et al. [30, 31]. Mao et al. aim to learn the causal graph based on

the features of the SERP, which also includes document rank and

document height. This causal graph is then used to correct for

the impact of those variables on the click data in order to learn

the intrinsic document relevance. However, the authors assume

a fixed length for each document and do not learn how to the

document lengths interact across different documents. Pathak et al.

[31], on the other hand, focused on the setting where snippets can

either contain the headline, summary, image, or any combination

of the above, with each element taking up additional space on the

screen. They find that changing the presentation of a document may

also change where it should be placed in the ranking, particularly

due to the increase in time the users spend examining the longer

presentations. Nevertheless, the authors focus on the setting where

the document lengths are chosen prior to determining the document

order, whilst in Section 4.2 we prove that this can lead to suboptimal

solutions. Finally, their approach assumes that user’s examination

behavior can be measured separately for each document, and does

not provide a ranking function for previously unseen queries.

3 Background: The Standard Ranking Setting
The core LTR task is to find a ranking 𝑦 = [𝑑1, 𝑑2, . . . , 𝑑𝐾 ] of length
𝐾 that orders documents by decreasing relevance 𝜌𝑖 for a given

query 𝑞 and document set 𝑑 ∈ 𝐷 . To assess the quality of a ranking,

per-position discounting factors 𝜃 (𝑖) are commonly used, e.g., one-

over-rank and DCG weighting. Stochastic ranking models [26, 37]

can optimize a policy 𝜋 that provides a probability distribution over

rankings to maximize an objective of the form:

RLTR (𝑞) = E𝜋 (𝑦)

[
𝐾∑︁
𝑖=1

𝜃 (𝑖)𝜌 (𝑑𝑖 )
]
=
∑︁
𝑦

𝜋 (𝑦)
𝐾∑︁
𝑖=1

𝜃 (𝑖)𝜌 (𝑑𝑖 ). (1)

In click modeling [8], the reward 𝜌 may often represent the per-

ceived relevance or attractiveness of the document, i.e., the proba-

bility the user will click on the document when exposed to it.

The policy of a Plackett-Luce LTR model [26, 32] is defined as:

𝜋PL (𝑦) =
𝐾∏
𝑖=1

𝜋PL (𝑦𝑖 | 𝑦1:𝑖−1) =
𝐾∏
𝑖=1

𝑒𝑚 (𝑑𝑖 )1[𝑑𝑖∉𝑦1:𝑖−1]∑ |𝐷 |
𝑑′=1 𝑒

𝑚 (𝑑′ )1[𝑑′∉𝑦1:𝑖−1]
, (2)

where𝑚(𝑑) is the score for document 𝑑 under some scoring func-

tion𝑚. In the Plackett-Luce distribution, documents are sequen-

tially sampled from a softmax distribution without replacement.
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Furthermore, the sampling probabilities in each position only de-

pend on the scores of unplaced documents. Whilst the optimization

of 𝜋PL policies can be done with standard policy gradient meth-

ods (i.e., via REINFORCE [39]), Oosterhuis [26, 27] has proposed

the PL-Rank family of methods, specialized to efficiently estimate

gradients of Plackett-Luce distributions for LTR optimization.

Nevertheless, the standard ranking setting is not applicable if

documents can be presented with different lengths. In particular,

this is mainly due to two limitations of its objective (Equation 1):

(1) the rank weights 𝜃 (𝑖) only consider the ranks of documents and

not their presentation lengths; and (2) a ranking always consists of

𝐾 placed documents. However, as discussed in Section 2, the length

of a document can affect the attractiveness and the amount of at-

tention it receives from users [24, 25]. Therefore, 𝜃 (𝑖) should adapt

according to the attention that is expected from users [13] and,

similarly, attractiveness 𝜌 (𝑑𝑖 ) should also change with length. Fur-

thermore, changing document presentation length should affect the

number of documents that can be presented on a single SERP [31].

None of these aspects are captured by the standard ranking setting.

4 Variable Presentation Length Problem Setting
This section introduces a formalization of the variable presentation

length ranking setting. Subsequently, we also discuss some of its

theoretical implications.

4.1 Slot based ranking
To capture the unique characteristics of this setting, we represent

each placement as a choice of document 𝑑 and its length 𝑙 , with a

full ranking being 𝑦 = [(𝑑1, 𝑙1), (𝑑2, 𝑙2), . . . , (𝑑 |𝑦 | , 𝑙 |𝑦 | )], where each
𝑑 can only be placed once. Crucially, we assume that each ranking

consists of 𝐾 positions or slots: len(𝑦) = ∑ |𝑦 |
𝑗=1
𝑙𝑖 = 𝐾 . However,

unlike the standard setting, each position now refers to a physical

space in the ranking, not a moment of placement. The lengths 𝑙

thus represent the number of slots each document occupies in the

ranking. We also denote the first slot 𝑑𝑖 occupies as 𝑠𝑖 = 1 +∑𝑖−1
𝑗=1 𝑙𝑖 .

The above changes then allow us to define a new optimization

objective called the expected attractiveness (EA) of a ranking:

R(𝑞) = E𝑦

[ |𝑦 |∑︁
𝑖=1

𝜃 (𝑠𝑖 , 𝑙𝑖 )𝜌 (𝑑𝑖 , 𝑙𝑖 )
]
=
∑︁
𝑦

𝜋 (𝑦)
|𝑦 |∑︁
𝑖=1

𝜃 (𝑠𝑖 , 𝑙𝑖 )𝜌 (𝑑𝑖 , 𝑙𝑖 ) . (3)

An important consequence of the above differences with stan-

dard ranking is that the number of unique documents |𝑦 | in a rank-

ing can be lower than 𝐾 . Our task is then to choose the document-

length pairs that maximize the weighted attractiveness in Equa-

tion 3 without exceeding the slot budget 𝐾 or duplicate document

placements. In contrast with standard ranking, both the position

weight 𝜃 and the reward 𝜌 depend on the presentation length 𝑙 .

For this work, we assume that 𝜌 is fixed for each (𝑑, 𝑙), i.e., for
document 𝑑 each presentation length is associated with a single

relevance value, which is the expected click-through rate (CTR)

of 𝑑 when exposed to the user. Finally, to make our analysis and

approach tractable, we assume a maximum document length of 𝐿

slots. Naturally, document lengths may in reality be adjustable even

up to a single pixel or may instead be fixed (but distinct) for each

document. We consider both of these important next steps to be

addressed by future work.

Finally, we note that our proposed setting has some overlap

with that of Pathak et al. [31]: they also capture that varying doc-

ument presentation lengths can lead to different number of items

appearing above the fold. See Section 2 for a further discussion.

4.2 Theoretical analysis on optimal rankings
A key aspect of our problem setting is the trade-off between extend-

ing document lengths and increasing the number of documents

on the SERP. Importantly, this trade-off is present even when the

attractiveness of a document is independent of its length. As illus-

trated in Table 1, in a simple three-slot ranking with documents 𝐴,

𝐵 and 𝐶 , both rankings [(𝐴, 2), (𝐵, 1)] and [(𝐵, 1), (𝐴, 2)] are opti-
mal in terms of EA under different discount weights 𝜃 . Notably, in

this example, under 𝜃2 extending the second item into the third slot

makes the user slightly more likely to observe it compared to the

first item, and thus, placing the more relevant item second leads

to a higher value of the EA metric. However, the observation that

under 𝜃2 the most attractive document 𝐴 should be placed second,

contradicts the PRP [34], which states that placements should be

in decreasing order of relevance. We thus conclude that PRP does

not hold in the variable document presentation length setting.

Moreover, first choosing document lengths to maximize the ex-

posure can similarly lead to suboptimal results. Whilst in the above

example the optimal length for 𝐴 is 2 under both values of 𝜃 , had

document 𝐵 not been available (i.e., only options are 𝐴 and 𝐶), the

optimal strategy in both cases would have instead been to present

document 𝐴 at length 3. Therefore, the above example proves that

the task of choosing document length cannot be separated into

separate ranking and document-specific length selection tasks:

Theorem 1. Let 𝜋∗ (𝑙, 𝑟 | 𝑑, 𝐷) be the optimal policy for jointly

choosing 𝑟 the rank of document 𝑑 and 𝑙 its presentation length.

The optimal policy cannot be separated into a separate ranking

policy and length selection policy:

∀𝐷, �(𝜋𝑟 , 𝜋𝑙 ),∀(𝑑, 𝑙, 𝑟 ) : 𝜋∗ (𝑙, 𝑟 | 𝑑, 𝐷) = 𝜋𝑟 (𝑟 | 𝑑, 𝐷)𝜋𝑙 (𝑙 | 𝑑) . (4)

Proof. Assume documents and position weights as in Table 1.

The optimal length policy for document 𝐴 is then 𝜋𝑙 (𝑙 = 2 | 𝐴) = 1.

If we only change the relevance of 𝐵 to 0, the optimal length policy

for 𝐴 is 𝜋𝑙 (𝑙 = 3 | 𝐴) = 1, thus there is no universal optimal 𝜋𝑙 . □

At first glance, it may seem feasible to solve the task with dy-

namic programming, but a further difficulty is that the optimal rank-

ing for 𝐾 slots is not necessarily an optimal sub-ranking for 𝐾 ′ > 𝐾
slots. This can be also seen in Table 1: 𝐵 should be placed ahead of

𝐴 under 𝜃2 and 𝐾 = 3, but the order is reversed under 𝐾 = 2 (i.e.,

[(𝐴, 1), (𝐵, 1)]). Nevertheless, optimal rankings should vary docu-

ment lengths due to the changes in exposure (and attractiveness)

arising in this setting. For instance, we can see that under 𝐾 = 3 the

optimal single-length solutions [(𝐴, 1), (𝐵, 1), (𝐶, 1)], [(𝐴, 2)] and
[(𝐴, 3)] are worse than the best mixed document length solution.

Finally, we note that, whilst not shown in the above example, the

optimal orderings may again be different for other values of 𝜌 that

maintain the relative order 𝐴 ≻ 𝐵 ≻ 𝐶 but not the ratio of their 𝜌

values, e.g., if 𝜌 (𝐵) = 0.01 then (𝐴, 3) would always be preferred.

Altogether, whilst it appears crucial to present documents at

different lengths and choose their ordering accordingly, the above
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Table 1: The impact of discount weights on optimal ordering. For three documents 𝐴, 𝐵,𝐶 with respective relevances 1.0, 0.6 and
0 (left, same for all lengths 𝑙), different choices of discount weights 𝜃1 (center left) and 𝜃2 (center right) with 𝐾 = 𝐿 = 3 lead to
different expected rewards for different rankings (right). 𝐵𝐴𝐴 represents ranking 𝑦 = [(𝐵, 1), (𝐴, 2)], whilst 𝐴𝐵(𝐶) is equivalent
to both 𝐴𝐵 and 𝐴𝐵𝐶. Best ranking per 𝜃 is underlined.

𝑑 𝜌 (𝑑)
A 1.0

B 0.6

C 0.0

𝜃1 l=1 l=2 l=3

s=1 0.500 0.667 0.750

s=2 0.333 0.500 -

s=3 0.250 - -

𝜃2 l=1 l=2 l=3

s=1 0.631 0.815 0.895

s=2 0.500 0.715 -

s=3 0.431 - -

AAA AAB ABB BAA BBA BBB AA AB(C) BA

𝜃1 0.750 0.817 0.800 0.800 0.650 0.450 0.667 0.700 0.633

𝜃2 0.895 1.074 1.060 1.094 0.920 0.537 0.815 0.931 0.879

examples reveal that there appears no straightforward optimal so-

lution – moreover, we proved that this task cannot be broken down

into separate ranking and length-selection policies. Accordingly,

the remainder of this work proposes a framework for jointly opti-

mizing document ordering and lengths.

5 Method: Variable Length Plackett-Luce
5.1 A distribution over rankings and lengths
We propose to build a novel model on top of the existing PL model

for ranking (Equation 2); whereas the original only models a distri-

bution over rankings, our novel model captures a distribution over

both rankings and presentation lengths.

Our novel model also follows sequential sampling of document

placements, but instead of sampling single documents 𝑑 , document-

length pairs (𝑑, 𝑙) are sampled, where 𝑙 is the presentation length of

𝑑 . To avoid a document from appearing multiple times in the same

ranking, the sampling of a (𝑑, 𝑙) pair is followed by the removal of

all other pairs that involve 𝑑 . For our notation, we use the binary

indicator variable1[𝑑𝑖 ∉ 𝑦1:𝑖−1] = 1[�𝑙 : (𝑑𝑖 , 𝑙) ∈ 𝑦1:𝑖−1] to indicate
earlier placements of a document. Another difference with standard

ranking is that the lengths of placed documents affect how many

can be displayed in the 𝐾 slots: specifically, a pair (𝑑, 𝑙) should not

be sampled if fewer than 𝑙 slots are unfilled at the end of a partial

ranking. Thus, we also introduce the indicator 𝜏 (𝑠𝑖+𝑙𝑖 ) = 1[𝑠𝑖+𝑙𝑖 ≤
𝐾 + 1] = 1[len(𝑦1:𝑖−1) + 𝑙𝑖 ≤ 𝐾] to indicate if there are enough

slots left for the placement of a document-length pair.

This notation then lets us define our novel VLPL distribution:

𝜋 (𝑦) =
|𝑦 |∏
𝑖=1

𝜋 (𝑦𝑖 | 𝑦1:𝑖−1) =
|𝑦 |∏
𝑖=1

𝜋 (𝑑𝑖 , 𝑙𝑖 | 𝑦1:𝑖−1), (5)

𝜋 (𝑦𝑖 | 𝑦1:𝑖−1) =
𝑒𝑚 (𝑑𝑖 ,𝑙𝑖 )1

[
𝑑𝑖∉𝑦1:𝑖−1

]
𝜏 (𝑠𝑖 + 𝑙𝑖 )∑ |𝐷 |

𝑑′=1

∑𝐿
𝑙 ′=1 𝑒

𝑚 (𝑑′,𝑙 ′ )1
[
𝑑′∉𝑦1:𝑖−1

]
𝜏 (𝑠𝑖 + 𝑙 ′)

. (6)

Analogous to the standard PL ranking model (Equation 2), the place-

ment probability 𝜋 (𝑑, 𝑙 | 𝑦1:𝑖−1) only depends on the score𝑚(𝑑, 𝑙)
and the scores of other eligible unplaced (𝑑 ′, 𝑙 ′) pairs. However, our
distribution differs in what pairs are considered eligible, as placing

one pair can make several other pairs ineligible to avoid duplicate

placements and space constraints. This goes beyond the sampling
without replacement of the standard PL model, which can also be

seen a special case 𝐿 = 1 of our novel variable length model.

5.2 Variable length Plackett-Luce optimization
Previous work on Plackett-Luce optimization has found efficient

techniques for the standard Plackett-Luce model [26, 27]. Fortu-

nately, this existing approach can be re-used for our novel variable

length model. In particular, we can apply the derivation steps cor-

responding to Equations 11-23 of Oosterhuis [26], with only minor

changes to match our model and objective. For brevity and due to

its high similarity, we do not repeat the full derivation here, but

report the following resulting gradient:

𝛿

𝛿𝑚
R(𝑞) =

|𝐷 |,𝐿∑︁
𝑑,𝑙=1

[ 𝛿
𝛿𝑚

𝑚(𝑑, 𝑙)
]
E𝑦

[ |𝑦 |∑︁
𝑖=𝑟 (𝑑,𝑙 )+1

𝜃 (𝑠𝑖 , 𝑙𝑖 )𝜌 (𝑑𝑖 , 𝑙𝑖 )︸                        ︷︷                        ︸
future reward after placement

(7)

+
𝑟 (𝑑 )∑︁
𝑖=1

𝜋 (𝑑, 𝑙 | 𝑦1:𝑖−1)
[
𝜃 (𝑠𝑖 , 𝑙)𝜌 (𝑑, 𝑙) −

|𝑦 |∑︁
𝑥=𝑖

𝜃 (𝑠𝑥 , 𝑙𝑥 )𝜌 (𝑑𝑥 , 𝑙𝑥 )
]

︸                                                                      ︷︷                                                                      ︸
expected reward minus the risk of placement

]
(8)

Importantly, analogous to Oosterhuis [26], the gradient of R(𝑞)
w.r.t. the score of a single document-length pair can be broken

down into three terms: (i) the future reward observed following the

placement, (ii) plus the expected direct reward of the placement,

(iii) minus the expected risk imposed by the pair before it is placed.

Unsurprisingly, compared to PL-Rank [26], the gradient in Equa-

tion 7 is calculated for each (𝑑, 𝑙) pair, with the reward 𝜌 andweights
𝜃 now depending on the observed document lengths. However, a

subtle but crucial difference is that we also differentiate between

𝑟 (𝑑, 𝑙), which is the rank at which 𝑑 is observed at length 𝑙 , and 𝑟 (𝑑),
which is the rank of 𝑑 at any length (the rank function is set to |𝑦 | if
its input is not observed). The distinction between 𝑟 (𝑑) and 𝑟 (𝑑, 𝑙) is
important as, due to the ranking size limit𝐾 , placing the document𝑑

at distinct lengths may change which (𝑑 ′, 𝑙 ′) can follow it. Therefore,

the future reward term for each length 𝑙 of 𝑑 is thus included only

when that particular pair (𝑑, 𝑙) is observed. The risk term and the

expected reward, however, accumulate up until 𝑑 has been shown

at any length, proportional to 𝜋 (𝑑, 𝑙 | 𝑦1:𝑖−1), after which all lengths

of 𝑑 become ineligible for placement. If a presentation length 𝑙 is

too long, these terms are 0, as 𝜏 (𝑠𝑖 + 𝑙) = 0→ 𝜋 (𝑑, 𝑙 | 𝑦1:𝑖−1) = 0.

The gradient formulation in Equation 7 can be turned into an

estimator by replacing the expectation with an average over sam-

pled rankings. For brevity, we omit the full equation but name this

approach VLPL-1. To our knowledge, VLPL-1 is the first method

to jointly optimize rankings and lengths in the variable document

presentation length setting.

The remainder of this section describes how to efficiently sample

rankings from the VLPL distribution (Section 5.3). Subsequently, in

Section 5.4, we propose a more sample-efficient estimator through

a smarter sampling technique for re-using samples. Finally, we

discuss how VLPL can be applied in an in-processing and post-

processing manner (Section 5.5).
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5.3 Efficiently sampling rankings
Whilst it may appear that variable length rankings are substantially

more difficult to sample than standard rankings [26], this can ac-

tually be done with a comparable computational complexity. The

trick is to first sample an invalid ranking 𝑦′ and then transform it

with a function 𝑓 such that 𝑓 (𝑦′) is a valid variable length ranking.

We start by defining 𝑦′, which, in contrast with the variable length

rankings as defined before, places 𝑑 once at every possible length 𝑙 ,

whilst ignoring the maximum ranking length 𝐾 . Still, 𝑦′ does not
allow the placement of duplicate documents of the same length.

This gives us the following probability for document placements:

𝜋 ′ (𝑑, 𝑙 | 𝑦′
1:𝑖−1) =

𝑒𝑚 (𝑑,𝑙 )1
[
(𝑑, 𝑙) ∉ 𝑦′

1:𝑖−1

]
∑ |𝐷 |
𝑑′=1

∑𝐿
𝑙 ′=1 𝑒

𝑚 (𝑑′,𝑙 ′ )1
[
(𝑑 ′, 𝑙 ′) ∉ 𝑦′

1:𝑖−1

] . (9)

Let 𝑑 ′𝑖 and 𝑙
′
𝑖 indicate the document at position 𝑖 in 𝑦′ and its length

respectively. The probability of the ranking 𝑦′ is then simply the

product of each placement probability:

𝜋 ′ (𝑦′) =
|𝐷 |𝐿∏
𝑖=1

𝑝 (𝑑 ′𝑖 , 𝑙 ′𝑖 | 𝑦′1:𝑖−1). (10)

We note that every document-length pair is placed in 𝑦′ and thus

|𝑦 | = 𝐷𝐿. Obviously, this makes 𝑦′ an invalid variable length rank-

ing as each document will appear 𝐿 times in the ranking, and thus

it is guaranteed to exceed the maximum length of 𝐾 .

Our next step is to use a function 𝑓 𝐾 that turns 𝑦′ into a valid

ranking of length 𝐾 , such that we end up with the same ranking

distribution: 𝜋 (𝑓 (𝑦′) = 𝑦) = 𝜋 (𝑦). Our choice of 𝑓 is a function

that sequentially takes the first document in𝑦′ that does not violate
either of the variable ranking constraints, until length 𝐾 is reached:

𝑓 (𝑦′)𝑖 = 𝑦′𝑗 where 𝑗 = argmin

𝑗 ′
𝑗 ′ ∈ {1, 2, . . . , 𝐷𝐿}

s.t. 𝑑 ′𝑗 ′ ∉ 𝑓 (𝑦
′)1:𝑖−1 ∧ len(𝑓 (𝑦′)1:𝑖−1) + 𝑙 ′𝑗 ′ ≤ 𝐾.

(11)

In other words, 𝑓 (𝑦′)1 = 𝑦′1, then 𝑓 (𝑦′)2 is the next document that

would not violate the validity of the ranking when placed, and so

forth. To show that this yields the same distribution as 𝜋 , we first

note that the probability of a document placement: 𝜋 (𝑓 (𝑦′)𝑖 = 𝑑 |
𝑓 (𝑦′)1:𝑖−1) is the probability of it being a valid option and being

ranked in front of all other valid options that are still available

after 𝑓 (𝑦′)1:𝑖−1. Following Luce’s choice axiom [22], the ordering

probabilities of the existing options in a PL model are not changed

under the introduction of additional alternatives, i.e., Pr(𝑎 ≻ 𝑏 |
{𝑎, 𝑏}) = Pr(𝑎 ≻ 𝑏 | {𝑎, 𝑏, 𝑐}). Thus, the availability of invalid

options in 𝑦′ does not change the relative ranking of valid options,

and therefore 𝜋 (𝑓 (𝑦′)𝑖 = (𝑑, 𝑙) | 𝑓 (𝑦′)1:𝑖−1) = 𝜋 (𝑦𝑖 = (𝑑, 𝑙) | 𝑦1:𝑖−1)
when 𝑓 (𝑦′)1:𝑖−1 = 𝑦1:𝑖−1. By extension, 𝜋 (𝑓 (𝑦′) = 𝑦) = 𝜋 (𝑦).

5.4 Extending VLPL for sample-efficiency
As previously suggested, VLPL-1 may have suboptimal sample-

efficiency when calculating the future reward. In order to address

this, we first start by defining the total placement reward as:

𝑔(𝑦, 𝑖) =
|𝑦 |∑︁
𝑥=𝑖

𝜃 (𝑠𝑥 , 𝑙𝑥 )𝜌 (𝑑𝑥 , 𝑙𝑥 ). (12)

This allows us to re-formulate Equation 7 as:

𝑔(𝑦,𝑑, 𝑙) = 𝑔(𝑦, 𝑟 (𝑑, 𝑙) + 1), (13)

ℎ(𝑦,𝑑, 𝑙) =
𝑟 (𝑑 )∑︁
𝑖=1

𝜋 (𝑑, 𝑙 | 𝑦1:𝑖−1)
[
𝜃 (𝑠𝑖 , 𝑙)𝜌 (𝑑, 𝑙) −𝑔(𝑦, 𝑖)

]
. (14)

The expected future reward with our sampling scheme is then:

E

[ |𝑦 |∑︁
𝑖=𝑟 (𝑑,𝑙 )+1

𝜃 (𝑠𝑖 , 𝑙𝑖 )𝜌 (𝑑𝑖 , 𝑙𝑖 )
]
=E

[
𝑔(𝑦,𝑑, 𝑙)

]
=E

[
𝑔(𝑓 (𝑦′), 𝑑, 𝑙)

]
. (15)

To increase the sample-efficiency, we want to reuse each 𝑦′. For
this purpose, we introduce the following function: 𝑓 (𝑦′ � 𝑑, 𝑙),
which is the same transformation as 𝑓 , except when 𝑑 is being

selected its length is set to 𝑙 (instead of the actually sampled length).

Furthermore, we introduce the variable 𝑙 (𝑑,𝑦′), denoting the length
of the first instance of 𝑑 that is included in 𝑓 (𝑦′). Our aim is then

to use samples arising from the sampling distribution of 𝑙 (𝑑,𝑦′)
to estimate the expected value under 𝑙 (𝑑,𝑦′) = 𝑙 . We therefore

introduce the following importance weight:

𝑝 (𝑑, 𝑙,𝑦′) =
𝑝
(
𝑙 (𝑑,𝑦′) = 𝑙

)∑𝐿
𝑙 ′=1 𝑝

(
𝑙 (𝑑,𝑦′) = 𝑙 ′

) =
𝑒𝑚 (𝑑,𝑙 )𝜏 ′ (𝑑, 𝑙,𝑦′)∑𝐿

𝑙 ′=1 𝑒
𝑚 (𝑑,𝑙 ′ )𝜏 ′ (𝑑, 𝑙 ′, 𝑦′)

, (16)

where 𝜏 ′ (𝑑, 𝑙,𝑦′) = 1[len(𝑓 (𝑦′)1:𝑟 (𝑑 | 𝑓 (𝑦′ ) )−1) + 𝑙 ≤ 𝐾] is true only
for the lengths at which 𝑑 can be placed when it is observed in

𝑓 (𝑦′). This then enables the following reformulation:

E𝑦′
[
𝑔(𝑓 (𝑦′), 𝑑, 𝑙)

]
= E𝑦′

[
𝑝 (𝑑, 𝑙,𝑦′)𝑔(𝑓 (𝑦′�𝑑, 𝑙), 𝑑, 𝑙)

]
, (17)

That is, we can use rankings 𝑦′ with any observed length 𝑙 (𝑑,𝑦′),
process them for the target length 𝑙 with 𝑓 (𝑦�𝑑, 𝑙) and reweigh

the resulting future reward with 𝑝 (𝑑, 𝑙,𝑦′). Repeating this for all

valid lengths at each position yields the gradient estimate:

𝛿

𝛿𝑚
R(𝑞) =

|𝐷 |,𝑘∑︁
𝑑,𝑙=1

[ 𝛿
𝛿𝑚

𝑚(𝑑, 𝑙)
]

· E𝑦′
[
𝑝 (𝑑, 𝑙,𝑦′)𝑔(𝑓 (𝑦′�𝑑, 𝑙), 𝑑, 𝑙) + ℎ(𝑓 (𝑦′), 𝑑, 𝑙)

]
.

(18)

Furthermore, whilst calculating a separate 𝑓 (𝑦′�𝑑, 𝑙) for each
(𝑑, 𝑙) pair may seem time-consuming, in practice it is actually not

needed. We first define Δ ∈ [1 − 𝐿, 2 − 𝐿, . . . , 𝐿 − 1] as the dif-

ference between the target length 𝑙 and observed length 𝑙 (𝑑,𝑦′).
Importantly, for a source ranking 𝑦′ which after applying 𝑓 (𝑦′) in-
cludes (𝑑𝑖 , 𝑙𝑖 ) and (𝑑 𝑗 , 𝑙 𝑗 ), the adjusted rankings 𝑓 (𝑦′�𝑑𝑖 , 𝑙𝑖+Δ) and
𝑓 (𝑦′�𝑑 𝑗 , 𝑙 𝑗 + Δ) in fact share the same tail, i.e., 𝑧 = max(𝑖, 𝑗) →
𝑓 (𝑦′ � 𝑑𝑖 , 𝑙𝑖 + Δ)𝑧+1: = 𝑓 (𝑦′ � 𝑑 𝑗 , 𝑙 𝑗 + Δ)𝑧+1:. We can thus use

the same ranking to calculate the future reward for multiple such

shifts, respectively reweighting each with 𝑝 (𝑑1, 𝑙1 +Δ, 𝑦′), 𝑝 (𝑑2, 𝑙2 +
Δ, 𝑦′), . . . , 𝑝 (𝑑 | 𝑓 (𝑦′ ) | , 𝑙 | 𝑓 (𝑦′ ) | + Δ, 𝑦′). Moreover, these future place-

ments would also be the same if instead we still placed 𝑑𝑖 at the

original observed length 𝑙𝑖 but then reduced the total number of

available slots in the ranking by Δ, i.e. 𝑓 (𝑦′ � 𝑑𝑖 , 𝑙𝑖 + Δ)𝑧+1: =

𝑓 𝐾−Δ (𝑦′, 𝑑𝑖 , 𝑙𝑖 )𝑧+1: = 𝑓 𝐾−Δ (𝑦′)𝑧+1:, where 𝑓 𝐾
′ (𝑦′) produces a rank-

ing 𝑦 of length 𝐾 ′ instead of 𝐾 .

As Δ can take on values between 1 − 𝐿 and 𝐿 − 1 (corresponding
to replacing the longest length with the shortest and vice-versa), the

future reward always arises from one of 2𝐿 − 1 rankings 𝑓 𝐾+Δ (𝑦′).
However, whilst 𝑓 𝐾 (𝑦′�𝑑, 𝑙 + Δ) and 𝑓 𝐾−Δ (𝑦′�𝑑, 𝑙) lead to the

same placements after 𝑑 , the slot positions 𝑠𝑖 in the latter would
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be shifted down by Δ. To maintain the consistency in the reward

between the two cases and to ensure the correct range of 𝜃 ’s inputs,

we define the adjusted total reward as:

𝑔′ (𝑦, 𝑖,Δ) =
|𝑦 |∑︁
𝑥=𝑖

1[𝑠𝑥 + Δ ≥ 1]𝜃 (𝑠𝑥 + Δ, 𝑙𝑥 )𝜌 (𝑑𝑥 , 𝑙𝑥 ) . (19)

We note that the indicator variable will always be one when calcu-

lating the future reward 𝑔′ (𝑦, 𝑖 + 1,Δ) for 1 ≤ 𝑙 (𝑑𝑖 , 𝑦′) + Δ ≤ 𝐿.
Finally, as shown by Oosterhuis [27], the computation of a gradi-

ent estimator for the PL distribution can be further accelerated by

utilizing helper variables, which are first pre-computed and re-used

for all positions. Along with applying Equation 19, we can thus

express the terms in Equation 18 as:

PR
Δ
𝑦,𝑖 = 𝑔

′ (𝑓 𝐾−Δ (𝑦), 𝑖,Δ), PR
Δ
𝑦,(𝑑 ) = PR

Δ
𝑦,𝑟 (𝑑 )+1, (20)

RI𝑦,𝑖 =

min( |𝑦 |,𝑖 )∑︁
𝑥=1

PR
0

𝑦,𝑖∑ |𝐷 |
𝑑′=1

∑𝐿
𝑙 ′=1 𝑒

𝑚 (𝑑′,𝑙 ′ )1[𝑑∉𝑦1:𝑥−1]𝜏 [𝑠𝑥 + 𝑙 ′]
, (21)

DR𝑦,𝑖,𝑙 =

min( |𝑦 |,𝑖 )∑︁
𝑥=1

𝜃 (𝑠𝑥 , 𝑙)∑ |𝐷 |
𝑑′=1

∑𝐿
𝑙 ′=1 𝑒

𝑚 (𝑑′,𝑙 ′ )1[𝑑∉𝑦1:𝑥−1]𝜏 [𝑠𝑥 + 𝑙 ′]
, (22)

RI𝑦,(𝑑,𝑙 ) = RI𝑦,min(𝑟 (𝑑 ),𝑟 (𝑙 ) ) , DR𝑦,(𝑑,𝑙 ) = DR𝑦,min(𝑟 (𝑑 ),𝑟 (𝑙 ) ),𝑙 , (23)

where 𝑟 (𝑙) is sup 𝑖 : len(𝑓 (𝑦′)1:𝑖−1) + 𝑙 ≤ 𝐾 , i.e., the last position at

which a document of length 𝑙 can be placed, and 𝑟 (𝑑) is the rank of

𝑑 in 𝑦0 = 𝑦. This, in turn, allows us to reformulate Equation 7 as:

𝛿

𝛿𝑚
R(𝑞) =

|𝐷 |,𝐿∑︁
𝑑,𝑙=1

[ 𝛿
𝛿𝑚

𝑚(𝑑, 𝑙)
]
E𝑦′

[
𝑝 (𝑑, 𝑙,𝑦′)PR𝑙−𝑙 (𝑑,𝑦

′ )
𝑦′,(𝑑 )

+ 𝑒𝑚 (𝑑,𝑙 )
(
𝜌 (𝑑, 𝑙)DR𝑓 (𝑦′ ),(𝑑,𝑙 ) − RI𝑓 (𝑦′ ),(𝑑,𝑙 )

)]
.

(24)

This gradient can be approximated using the sampling procedure

for 𝜋 ′ described in Subsection 5.3, yielding our estimator VLPL-2:

𝛿

𝛿𝑚
R(𝑞) =

|𝐷 |,𝐿∑︁
𝑑,𝑙=1

𝛿

𝛿𝑚
𝑚(𝑑, 𝑙)

𝑁∑︁
𝑖=1

1

𝑁

[
𝑝 (𝑑, 𝑙,𝑦′(𝑖 ) )PR𝑙−𝑙 (𝑑,𝑦

′(𝑖 ) )
𝑦′(𝑖 ) ,(𝑑 )

+ 𝑒𝑚 (𝑑,𝑙 )
(
𝜌 (𝑑, 𝑙)DR𝑓 (𝑦′(𝑖 ) ),(𝑑,𝑙 ) − RI𝑓 (𝑦′(𝑖 ) ),(𝑑,𝑙 )

)]
.

(25)

This estimator has higher sample-efficiency than VLPL-1 as it shares

the future reward across different lengths of the same document.

The risk and the expected direct reward terms RI and DR are still

calculated using the standard ranking 𝑦 = 𝑦0 of length 𝐾 . The exact

steps of our approach are also outlined in Algorithm 1.

Finally, we note that VLPL-1 can similarly be implemented with

PL-Rank-3-like sample-efficiency by using the reward PR
0

𝑦′,𝑟 (𝑑,𝑙 )+1
in place of PR

Δ
𝑦′,𝑟 (𝑑 )+1 and setting 𝑝 (𝑑, 𝑙,𝑦′) to 1.

5.5 Using VLPL as in- or post-processing
Existing LTR work mainly aims to optimize machine learning mod-

els for the ranking task [3, 26, 28]; we will refer to this as an in-
processing application of LTR. However, LTR gradients can also be

used to optimize a ranking directly, i.e., when𝑚 is a look-up table

instead of a model. This also allows for a post-processing application
of LTR, and by extension VLPL, where the reward values 𝜌 are

predicted, and subsequently, the ranking is optimized for these pre-

dictions. Post-processing is not very popular for standard ranking,

Algorithm 1 VLPL-2 Gradient Estimator

1: Input: Items: 𝐷 ; Scores:𝑚; Relevances: 𝜌 ; Position weights: 𝜃 ;

Slot number: 𝐾 ; Item length limit: 𝐿; Sample number: 𝑁 .

2: {𝑦′(1) , 𝑦
′
(2) , . . . , 𝑦

′
(𝑁 ) } ← SampleRankings(m, N, K, L)

3: Grad← 0 ∈ R |𝐷 |×𝐿
4: 𝑆1, . . . , 𝑆𝐿 ←

∑ |𝐷 |
𝑑=1

exp(𝑚(𝑑, 1)), . . .∑ |𝐷 |
𝑑=1

exp(𝑚(𝑑, 𝐿))
5: for 𝑗 ∈ [1, 2, . . . , 𝑁 ] do
6: // Each 𝑦𝑥 = [ (𝑑𝑥

1
, 𝑙𝑥
1
), . . . , (𝑑𝑥|𝑦𝑥 |, 𝑙

𝑥
|𝑦𝑥 | ) ], 𝑠

𝑥
𝑖
= 1 + len(𝑦𝑥

1:𝑖−1 )
7: 𝑦−𝐿+1, . . . , 𝑦𝐿−1 ← 𝑓 𝐾+𝐿−1 (𝑦′( 𝑗 ) ), . . . , 𝑓 𝐾−𝐿+1 (𝑦

′
( 𝑗 ) )

8: 𝑆 ′
1
, . . . , 𝑆 ′

𝐿
← 𝑆1, . . . , 𝑆𝐿

9: PR
−𝐿+1
𝐾+𝐿 , . . . , PR

𝐿−1
𝐾+𝐿 ← 0, . . . , 0

10: for 𝑖 ∈ [𝐾 + 𝐿 − 1, 𝐾 + 𝐿 − 2, . . . , 1] do
11: for Δ ∈ [−𝐿 + 1, . . . , 𝐿 − 1] do
12: 𝑢 = 1[|𝑦Δ | ≥ 𝑖]1[𝑠𝑖 + Δ ≥ 1]𝜌 (𝑑Δ𝑖 , 𝑙Δ𝑖 )𝜃 (𝑠Δ𝑖 + Δ, 𝑙Δ𝑖 )
13: PR

Δ
𝑖 ← PR

Δ
𝑖+1 + 𝑢

14: RI0,DR
1

0
, . . . ,DR𝐿

0
← (0, 0, . . . , 0)

15: for 𝑖 ∈ [1, . . . , 𝐾] do
16: 𝑆 ′ =

∑𝐿
𝑙=1
𝑆 ′
𝑙

17: RI𝑖 ← RI𝑖−1 + PR0

𝑖 /𝑆 ′
18: for 𝑙 ∈ [1, . . . , 𝐿] do
19: DR

𝑙
𝑖 ← DR

𝑙
𝑖−1 + 𝜃 (𝑠0𝑖 , 𝑙)/𝑆 ′

20: 𝑆 ′
𝑙
← 1[𝑙 ≤ 𝐾 − (𝑠0𝑖 + 𝑙0𝑖 ) + 1] (𝑆 ′𝑙 − exp(𝑚(𝑑

0

𝑖 , 𝑙)))
21: 𝑝𝑙𝑖 ← exp (𝑚(𝑑0𝑖 , 𝑙))1[𝑙≤𝐾−𝑠0𝑖 +1]
22: for 𝑑 ∈ [1, . . . , |𝐷 |] do
23: for 𝑙 ∈ [1, . . . , 𝐿] do
24: 𝑟1 ← min(rank(𝑑,𝑦0), 𝐾)
25: 𝑟2 ← min(𝑟1, sup 𝑖 : {𝑙 ≤ 𝐾 − 𝑠0𝑖 + 1})
26: 𝑢 ← exp(𝑚(𝑑, 𝑙)) [𝜌 (𝑑, 𝑙) · DR𝑙𝑟2 −RI𝑟2 ]

27: Grad(𝑑, 𝑙) ← Grad(𝑑, 𝑙) + 𝑝𝑙𝑟1/
∑𝐿
𝑙 ′=1 𝑝

𝑙 ′
𝑟1
· PR𝑙−𝑙

0

𝑟
1

𝑟1+1 + 𝑢
28: return Grad/𝑁

as the optimal ranking simply sorts according to 𝜌 , thus there is

little added value, while it adds substantial costs during inference.

However, in our variable document length setting the PRP does not

hold and, therefore, post-processing could actually result in better

rankings than is possible with a standard scoring model. For similar

reasons, post-processing ranking has also been used for ranking

fairness [6]. In this work, we evaluate VLPL both applied as an

in-processing method and a post-processing method.

6 Experimental Setup
Our aim is to better understand the variable presentation length

setting and evaluate our proposed methods for this task. To begin,

as discussed in Section 4.2, there is no known method that can

provide the optimal ranking and lengths in this setting, even when

all the attractiveness values 𝜌 for the query are available (i.e., the

oracle setting). We are therefore interested in determining whether

VLPL can find high reward rankings, both when the 𝜌 values are

given or unknown. Thus our first two research questions are:

RQ1 When provided with true attractiveness labels, does VLPL

learn rankings with a higher EA metric than the baselines?

RQ2 Does VLPL also learn higher EA rankings when it does not

have access to the true attractiveness?
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Furthermore, as it is unclear what optimized variable length rank-

ings look like, our third research question asks:

RQ3 What document lengths does VLPL place in each position for

different choices of 𝜃?

Finally, since VLPL uses samples for its gradient estimation, it seems

important to understand its sample-efficiency. Our final research

question is therefore:

RQ4 Does VLPL have comparable performance with a lower num-

ber of sampled rankings?

Thus, our research questions cover different aspects of VLPL’s

performance and the variable presentation length setting.

6.1 Datasets and length-specific attractiveness
To our knowledge, there are no datasets featuring different pre-

sentation lengths for the same document that can be used to an-

swer our research questions. We thus use Yahoo! Webscope [7] and
MSLR-WEB30k [33] datasets, consisting of queries and associated

documents. Each query-document pair is represented by a feature

vector and an expert relevance judgement label 𝑅 ∈ {0, 1, . . . , 4}.
Yahoo contains 29,921 queries with an average of 24 documents per

query, whilst MSLR consists of 30,000 queries with an average of

125 documents per query. For computational efficiency we focus

on the queries with 250 or fewer documents, retaining all queries

in Yahoo and over 95% of queries in MSLR.

To generate 𝐿 attractiveness labels for every document, we first

remap the labels in Yahoo to 5𝐿 non-overlapping equally sized bins.

For a document𝑑 with original label 𝑅, the attractiveness 𝜌 is higher

for longer document presentation lengths 𝑙 , yet is still primarily

determined by 𝑅: 𝜌 ∈ [(𝑅𝐿 + 𝑙 − 1)/(5𝐿), (𝑅𝐿 + 𝑙)/(5𝐿)]. On the

other hand, due to the higher number of documents per query in

MSLR, we emphasize the most relevant documents and double each

bin’s size relative to the last, renormalizing their sum.

In order to determine 𝜌 (𝑑, 𝑙), we then follow Fang et al. [11],

generating 𝐿 + 1 scores using query-document features. 𝐿 of these

are normalized with other scores in (𝑑, 𝑙)’s bin and map to a quan-

tile within that bin’s range, yielding 𝜌 (𝑑, 𝑙). Furthermore, as some

documents may not actually benefit from a longer presentation [36],

we randomly reorder the 𝜌 values of different lengths for half of

the documents determined by the 𝐿 + 1’th score.

6.2 Models, baselines and training
For our in-processing models, we use VLPL-1 and VLPL-2 to cal-

culate the gradient of
𝛿
𝛿𝑚
R(𝑞) in order to train a multilayer per-

ceptron (MLP) that learns 𝐿 scores𝑚(𝑑, 𝑙) in Equation 6 for each

query-document pair based on its features. In contrast, for the post-

processing approach, we use the binary cross-entropy loss to first

train an MLP to predict 𝜌 (instead of𝑚). Then for each test query,

we instantiate a look-up table with a single score for each (𝑑, 𝑙)
pair, and use VLPL-1/2 to learn these scores to maximize Equation 3

specifically for that query, using the outputs of MLP in place of 𝜌 .

We contrast our four VLPL models with the following baselines.

The first method family, referred to as sort-𝑙 , similar to the VLPL

post-processing, use an MLP to estimate 𝜌 for a single length 𝑙 to

sort and place documents of only that length. In addition, we train

𝐿 separate single-length PL-Rank-3 models using in-processing,

which we denote as PLR-3-𝑙 . For length-adaptive baselines, the

greedy model uses MLP estimates of 𝜌 to repeatedly select an eligi-

ble (𝑑, 𝑙) pair maximizing 𝜃 (𝑠, 𝑙)𝜌 (𝑑, 𝑙). However, the above policy
may also prefer one longer document over multiple shorter yet only

slightly less relevant ones. The slot-avg model thus instead ranks

(𝑑, 𝑙) pairs on 𝜃 (𝑠, 𝑙)𝜌 (𝑑, 𝑙)/𝑙 , in effect choosing the document with

the highest per-slot expected reward. Finally, we also evaluate the

above models with full access to the true relevances (oracle setting).

In this case the fixed-length sorting models are an upper bound to

PL-Rank-3, which is therefore omitted.

All models contain 1-5 hidden layers of size {16, 32, . . . , 128} and
sigmoid activations, trainedwithAdamoptimizer [18]with learning

rate, 𝐿2 regularization in {0, 1−6, 1−5, . . . , 1} and dropout in [0, 0.8].
We report test set results over 5 independent runs performed under

identical circumstances for the best configuration of each model,

selected on the validation set results of the first run. VLPL trained

with 𝑁 = 10,000 sampled rankings per update step. All models

trained in PyTorch [29] on a single NVIDIA RTX A5000 GPU.

6.3 Evaluation and position bias
We evaluate all models using the EA objective in Equation 3. We

fix the number of slots 𝐾 at 30 and maximum document length

𝐿 at 3, representing one possible production setting. Under the

standard rank-based position bias model [28], users are assumed

to observe the contents of each position with a probability 𝜃 (𝑖)
that only depends on the position. As in our setting a document

can span multiple positions, we consider the document to be ob-

served as long as any of its slots are observed, yielding 𝜃 (𝑠, 𝑙) =
1 −∏𝑠+𝑙−1

𝑖=𝑠 (1 − 𝜃 (𝑖, 1)), where 𝜃 (𝑖, 1) is equivalent to 𝜃 (𝑖) in Equa-

tion 1 – the standard observation probability for rank 𝑖 [15]. We

evaluate two choices of 𝜃 (𝑖) – the slowly decaying DCG weights

𝜃DCG (𝑖) = 1/log
2
(𝑖+1) and the steeper inverse rank 𝜃

rank
−1 (𝑖) = 1/𝑖 ,

corresponding to DCG and the sum of reciprocal ranks if ∀𝑙 = 1.

7 Results
7.1 Ranking with known relevance
We start by addressing the first research question (RQ1): whether
VLPL is able to more efficiently order documents and their lengths

to achieve higher reward when compared to the baselines, when

the attractiveness of each document is known. Table 2 shows the

performance in terms of EA in this oracle setting where the number

of slots 𝐾 = 30 and maximum document length is 𝐿 = 3 slots.

We can see that adaptively selecting document lengths has a

very large impact on the EA metric. Both variable length base-

lines achieve a substantial and consistent improvement over the

single-length baselines, with the greedy model performing better

under 𝜃DCG and the slot-avg model with 𝜃
rank

−1 . Different strategies

also achieve the best performance among the single-length models

in different settings, highlighting the importance of tailoring the

document presentation to the setting where the ranking is shown.

On the other hand, both VLPL-1 and VLPL-2 demonstrate a

very large and statistically significant improvement over all models

across every setting, with a relative performance increase in EADCG

over the best baseline on Yahoo exceeding 10%. As such, VLPL is

clearly able to generate highly attractive rankings in this setting.

Section 7.4 further compares the performance of VLPL models.
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Table 2: EA for𝐾 = 30 and 𝐿 = 3 in the oracle settingwithDCG
and inverse rank slot weights. Results are averages over five
independent runs; standard deviations in parentheses. Best
result in each task denoted in bold. Significant improvement
of a model over all (other) baselines denoted by △ (separate
one-sided Wilcoxon signed rank tests, 𝑝 <0.05).

MSLR Yahoo!

Model EADCG EArank−1 EADCG EArank−1

sort-1 1.500 (0.002) 0.908 (0.002) 2.832 (0.000) 1.695 (0.000)

sort-2 1.628 (0.005) 0.925 (0.004) 3.113 (0.000) 1.680 (0.000)

sort-3 1.733 (0.010) 0.981 (0.006) 3.137 (0.000) 1.662 (0.000)

greedy 1.917 (0.008) 1.086 (0.005) 3.326△(0.000) 1.778 (0.000)

slot-avg 1.911 (0.005) 1.113△(0.003) 3.282 (0.000) 1.926△(0.000)

VLPL-1 2.064△(0.008) 1.187△(0.005) 3.665△(0.000) 2.031△(0.000)
VLPL-2 2.064△(0.008) 1.187△(0.005) 3.670△(0.000) 2.030△(0.000)

Overall, we observe that adaptively choosing document presen-

tation length is very important, with particularly high performance

shown by VLPL. We thus answer RQ1 positively: when true attrac-

tiveness is known, compared to the baselines, VLPL is able to find

significantly more attractive variable presentation length rankings.

7.2 Ranking with learned relevance
We have established that VLPL can effectively optimize variable

presentation length rankings when documents’ attractivenesses

are given. Nevertheless, for previously unseen queries these are

unknown. Accordingly, we aim to answer our second research

question (RQ2): can VLPL be used to generalize to unseen queries?

As shown in Table 3, the performance of all models is substan-

tially lower compared to the oracle setting (cf. Table 2). Here, sort−3
now also consistently performs the best among sort−𝑙 models. To-

gether, these observations suggest that relevance misestimation

can have a significant impact on learned rankings in this setting.

Nevertheless, both in-processing and post-processing versions

of VLPL still achieve statistically significant improvements over all

baselines across all settings. We observe particularly high perfor-

mance for the post-processing approaches, and especially VLPL-2.

The high performance of VLPL strongly suggests that being able

to tailor document length choices to the specific document pool of

each query may be beneficial in the variable length ranking setting.

Interestingly, VLPL-1 appears to generally perform better than

VLPL-2 for in-processing. As the performance of both VLPL models,

and particularly VLPL-2, is higher for post-processing, we speculate

that in-processing may introduce additional noise in the future

reward and which may be amplified by reward-sharing of VLPL-2.

Nevertheless, we observe that all VLPLmethods perform the best

across all our settings. Therefore, we can answer RQ2 affirmatively:

VLPL methods also achieve the highest EA on unseen queries with

learned attractiveness.

7.3 Learned rankings
As we’ve shown that VLPL can learn high reward rankings in

the variable presentation length task, we then turn to RQ3: what
document lengths does VLPL place in the learned rankings?

Table 3: EA for 𝐾 = 30 and 𝐿 = 3 with learned relevance
and DCG and inverse rank slot weights. Results are aver-
ages over five independent runs, with standard deviations in
parentheses. Best result for each task denoted in bold. Best
in-processing model in each task is underscored. Significant
improvement over all baselines denoted by △ (separate one-
sided Wilcoxon signed rank tests, 𝑝 < 0.05).

MSLR Yahoo!

Model EADCG EArank−1 EADCG EArank−1

In-processing

PLR-3-1 0.777 (0.008) 0.421 (0.003) 2.466 (0.001) 1.385 (0.000)

PLR-3-2 0.839 (0.006) 0.458 (0.003) 2.699 (0.001) 1.394 (0.002)

PLR-3-3 0.931 (0.016) 0.522 (0.008) 2.761 (0.001) 1.423 (0.001)

VLPL-1 0.953△(0.019) 0.533△(0.008) 2.982△(0.021) 1.603△(0.001)
VLPL-2 0.959△(0.018) 0.527△(0.005) 2.976△(0.002) 1.590△(0.003)

Post-processing

sort-1 0.781 (0.005) 0.419 (0.002) 2.469 (0.001) 1.385 (0.001)

sort-2 0.843 (0.006) 0.452 (0.003) 2.698 (0.001) 1.404 (0.001)

sort-3 0.929 (0.015) 0.513 (0.010) 2.757 (0.001) 1.424 (0.001)

greedy 0.935 (0.018) 0.492 (0.011) 2.747 (0.001) 1.428 (0.005)

slot-avg 0.896 (0.020) 0.516 (0.007) 2.600 (0.010) 1.520 (0.001)

VLPL-1 0.971△(0.020) 0.535△(0.009) 3.042△(0.001) 1.627△(0.000)
VLPL-2 0.971△(0.020) 0.536△(0.008) 3.049△(0.001) 1.628△(0.001)

The lengths of documents occupying each slot for MSLR are

shown in Figure 2. We first examine the behavior of VLPL-2 in the

oracle setting, which corresponds to the task of finding the best

possible ranking. We see that VLPL-2 starts with a high probability

of placing documents at length 1 at the top of the ranking, followed

by the increase in the proportion of lengths 2 and 3. Length 3

then occupies the vast majority of the ranking in the final positions.

Such behavior of showing lower-ranked documents at longer length

was previously found to be beneficial by Marcos et al. [24]. The

shift from shorter to longer lengths is especially pronounced for

𝜃
rank

−1 , suggesting that longer lengths and the associated increase

in exposure may be particularly useful under stronger position bias.

Surprisingly, when document attractiveness is not known and

instead estimated, VLPL follows a pattern that is roughly similar to

the one in the oracle setting, yet with almost no use of length 2. We

hypothesize that this may be due to the misestimation of 𝜌 , which,

as discussed in Subsection 4.2 may lead to a different solution even

if the relative ordering of all estimated 𝜌 (𝑑, 𝑙) values is correct.
In contrast to VLPL, the slot-avg model places documents at a

short length for longer, whilst the greedy model strongly prefers

maximum length for most of the ranking, producing highly similar

rankings for different 𝜃 . As the performance of VLPL-2 was pre-

viously shown to be significantly higher, the difference between

models across different settings suggests that balancing document

lengths is a critical factor that allows VLPL-2 to achieve strong

performance, particularly in the oracle setting.

We saw that VLPL-2 strongly modulates its lengths. As such,

for RQ3 we conclude that: VLPL places shorter documents at the
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Figure 2: Distribution of document lengths occupying each
slot in learned rankings in MSLR. y-axis of stacked bar chart
denotes the slot, x-axis denotes the proportion of rankings
in the first test fold where the slot is occupied by the corre-
sponding length. Length 0 denotes padding.

start of the ranking and progressively increases the placed docu-

ment lengths, with a quicker transition for 𝜃
rank

−1 .

7.4 Sample-efficiency
We then arrive at our final research question (RQ4): can VLPL mod-

els also achieve strong performance whilst using fewer samples?

To answer this, Figure 3 shows VLPL performance under a varied

number of samples 𝑁 in the oracle and non-oracle settings.

We can see that increasing the number of samples leads to im-

provements in EA, with smaller, but still observable gains at larger

sample numbers. We also observe that whilst the performance of

VLPL-1 and VLPL-2 is very similar at 𝑁 = 10,000, VLPL-2 shows

stronger performance at lower values of 𝑁 , with particularly sub-

stantial improvements over VLPL-1 at 𝑁 ≤ 100. Nevertheless, for

𝑁 ≥ 100, both VLPL models generally achieve strong performance

and always outperform the best baseline at 𝑁 = 1,000, highlighting

the high applicability of VLPL to the variable presentation length

ranking task. As such, in response to RQ4, we affirm that: VLPL

models, and especially VLPL-2, achieve large improvements over

the baselines even when using fewer samples.

8 Conclusion and Future Work
In this paper we introduced the variable presentation length ranking

setting, where the task is to simultaneously choose the document
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Figure 3: EA for post-processingVLPLmodels under different
number of samples. Results are averages over five indepen-
dent runs, the difference between the best and worst runs
denoted by shading. Best baseline per setting denoted by star.

order and the size of each document’s presentation in the ranking.

We showed that this setting is substantially more complex than

standard ranking – the best performance can only be achieved

when document order and presentation lengths are decided jointly.

To tackle this problem, we introduced the variable document length

Plackett-Luce model, and four VLPL methods for optimizing it.

Our experiments show that VLPL is highly suited for ranking with

variable presentation lengths and underscore the importance of

considering document presentation in LTR.

Importantly, whilst we model document presentation lengths in

terms of slots, it may also be possible to extend it to continuous

values to represent pixel lengths of each document. Furthermore,

as different policies may be best suited for different presentation

contexts, being able to learn a policy that is guaranteed to be ef-

fective across multiple settings (e.g., on mobile and desktop) may

further help the application of such models. Altogether, our work

highlights the importance, the difficulty and the opportunities of

LTR with variable result presentation lengths.

Reproducibility Our experimental implementation is publicly

available at https://github.com/NKNY/varlenranksigir2025.
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