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1 Introduction
Click modelling and unbiased learning-to-rank methods estimate
user preferences from logged clicks with rankings, while disentan-
gling them from other causal factors that affect clicks [7, 10, 14, 25].
The position-based click model (PBM) [7, 8] is a foundational click
model that remains relevant due to its combination of simplicity
and effectiveness [1, 2, 6, 8, 14, 26, 28, 35]:

Definition 1.1 (Position-based click model (PBM)). In the
PBM, the probability of a click (C = 1) on an item 𝑑 displayed at
position 𝑘 of a ranking in the context 𝑞 is a product of the probability
that position 𝑘 is examined (E = 1), conditioned on the position, and
the probability that item is found attractive (R = 1), conditioned on
the context and item:

P[ C = 1 | 𝑞, 𝑑, 𝑘 ] =P[ E = 1 | 𝑘 ]P[ R = 1 | 𝑞, 𝑑 ] = 𝜃𝑘𝜁𝑞,𝑑 . (1)

The 𝜃 and 𝜁 parameters are often referred to as position bias and
item relevance (a.k.a. attractiveness or preference) factors respec-
tively [8, 23]. Since examination and relevance cannot be observed
directly, the PBM parameters have to be inferred from logged click
data [7, 8, 35]. Let 𝑁𝑞,𝑑,𝑘 ∈ Z≥0 be the number of times item 𝑑 was
displayed at position 𝑘 and 𝑀𝑞,𝑑,𝑘 ∈ Z≥0 the number of times 𝑑
was clicked at 𝑘 and let N andM be tuples of all 𝑁𝑞,𝑑,𝑘 and𝑀𝑞,𝑑,𝑘
values respectively. Existing methods for estimating the parameters
of the PBM take one of two approaches [25]; The click model family
searches for the parameters that maximize the likelihood of the
data [7, 15, 35]: (𝜽 ∗, 𝜻 ∗) = argmax(𝜽 ,𝜻 ) P[M |N, 𝜽 , 𝜻 ]. Unbiased
learning-to-rank methods first estimate the examination probabili-
ties per rank, e.g., through position randomization [35], and then
use these as propensities for inverse-propensity-scoring (IPS) esti-
mates of relevance [14, 34], for example, with estimated propensities
𝜌 : 𝜁 IPS

𝑞,𝑑
= 1∑𝐾

𝑘=1 𝑁𝑞,𝑑,𝑘

∑𝐾
𝑘=1

𝑀𝑞,𝑑,𝑘

𝜌 [E=1 |𝑘 ] .
A significant limitation of these approaches is that they only

provide pointwise estimates for the parameters [13]. Therefore,
they do not give any indication of how reliable their estimates are,
nor how much confidence one should have in their value [16]. This
is especially concerning since the PBM explains observations by
products of probabilities, and consequently, often many different
parameter values can explain observed click data equally well [11,
25]. This larger limitation in the click modelling and unbiased
learning-to-rank fields, as to the best of our knowledge, all their
methodologies only provide pointwise estimates [10, 14, 15, 23, 27].

In this work, we propose the first epistemic parameter estimation
method for the PBM, namely, our approach is based on evidential
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deep-learning [3, 21, 22, 31, 32] and learns a distribution for each
of its parameters that represent epistemic uncertainty. Our model
consists of a Beta distribution for each parameter, i.e., 𝜃𝑘 ∈ (0, 1)
for every 𝑘 and 𝜁𝑞,𝑑 ∈ (0, 1) for every (𝑞, 𝑑), which are treated
as independent samples. Accordingly, we optimize the model by
searching for the best 𝛼 and 𝛽 parameters of the Beta distributions,
i.e., (𝛼𝑘 , 𝛽𝑘 ) for every 𝜃𝑘 , and (𝛼𝑞,𝑑 , 𝛽𝑞,𝑑 ) for every 𝜁𝑞,𝑑 , by maxi-
mizing the likelihood of the data under the 𝛼 and 𝛽 parameters;
with 𝜽 ∈ (0, 1)𝐾 , 𝜻 ∈ (0, 1)𝑄𝐷 , and their distribution parameters
𝜶𝜽 , 𝜷𝜽 ,𝜶𝜻 , 𝜷𝜻 as tuples of all 𝛼𝑘 , 𝛽𝑘 , 𝛼𝑞,𝑑 and 𝛽𝑞,𝑑 respectively:

argmax
(𝜶𝜽 ,𝜷𝜽 ,𝜶𝜻 ,𝜷𝜻 )

∫
P
(
M |N, 𝜻 , 𝜽

)
p
(
𝜻 , 𝜽

��𝜶𝜻 , 𝜷𝜻 ,𝜶𝜽 , 𝜷𝜽
)
𝑑𝜻𝑑𝜽 . (2)

However, a direct application of Monte Carlo integration to solve (2)
pose substantial challenges. In particular, the numerical precision
of the sample values and the high variance inherent in the gradient
estimation are the main difficulties. As a solution, we introduce a
novel approach that optimizes a numerically-stable approximation
of the log-likelihood and reduces variance through conditioning on
partial samples.

We pose our novel method as the first epistemic click model and
hope our work serves as a starting point for a Bayesian research
direction in click modelling that further builds on evidential deep
learning for uncertainty quantification [3, 17, 21, 29, 31].

2 Preliminaries: Notation and Epistemic PBM
In our setting, the observed data are query-item pairs, their displays
to the users and the clicks received from displays. We have the
query-item pairs (𝑞, 𝑑) ∈ D with feature-vector representations
x𝑞,𝑑 . For every position 𝑘 ∈ {1, 2, . . . , 𝐾} and pair (𝑞, 𝑑), 𝑁𝑞,𝑑,𝑘 ∈
Z≥0 indicates the number of times the item 𝑑 was displayed at
position 𝑘 for query 𝑞, and𝑀𝑞,𝑑,𝑘 the number of times it was clicked.
For convenience, we also define 𝑊𝑞,𝑑,𝑘 = 𝑁𝑞,𝑑,𝑘 − 𝑀𝑞,𝑑,𝑘 as the
number of displays without clicks. Furthermore, we define N =(
𝑁𝑞,𝑑,𝑘 : (𝑞, 𝑑) ∈ D, 𝑘 ∈ (1, 2, . . . , 𝐾)

)
as the sequence of all 𝑁𝑞,𝑑,𝑘

values and define M and W analogously. Lastly, we assume that
the number of pairs is much greater than the number of display
positions: |D| >> 𝐾 , which is generally true in recommendation.

The PBM models the probability of a click as a product of a posi-
tion factor 𝜃𝑘 and a relevance factor 𝜁𝑞,𝑑 (Definition 1.1). Further-
more, we assume that all clicks are independent Bernoulli variables,
an assumption that often goes implicitly with the PBM [7]. There-
fore, we can model each sum of clicks 𝑀𝑞,𝑑,𝑘 ∼ Bin(𝑁𝑞,𝑑,𝑘 , 𝜃𝑘𝜁𝑞,𝑑 )
as binomial distributed random variable. To keep our notation brief,
we define 𝜽 = (𝜃𝑘 : 𝑘 ∈ (1, 2, . . . , 𝐾)) as the sequence of all 𝜃𝑘 and
define 𝜻 analogously. Thereby, 𝜽 and 𝜻 capture the aleatoric uncer-
tainty of our model [13], as they aim to describe the stochasticity
inherent in the clicking behavior of users.

To capture epistemic uncertainty, we opt for an evidential ap-
proach [3, 19, 21] by fitting a parametric distribution over the pos-
sible values of 𝜽 and 𝜻 . Specifically, we rely on Beta distributions
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as each individual 𝜃 or 𝜁 variable is in the closed interval [0, 1].
Accordingly, we model each 𝜃𝑘 as a sample from a Beta distribution
specific to position 𝑘 : 𝜃𝑘 ∼ Beta

(
𝛼𝑘 , 𝛽𝑘

)
; and each 𝜁𝑞,𝑑 as a sample

from a Beta distribution specific to the query-document pair 𝑞, 𝑑 :
𝜁𝑞,𝑑 ∼ Beta

(
𝛼𝑞,𝑑 , 𝛽𝑞,𝑑

)
. We take the density function as the product

of the individual marginal densities:

p
(
𝜽 , 𝜻

��𝜶𝜽 , 𝜷𝜽 , 𝜶𝜻 , 𝜷𝜻
)
= p

(
𝜽 | 𝜶𝜽 , 𝜷𝜽

)
p
(
𝜻 |𝜶𝜻 , 𝜷𝜻

)
. (3)

This implies that 𝜃𝑘 or 𝜁𝑞,𝑑 samples are independent, i.e., condition-
ing on one does not change the distributions of the others:

p
(
𝜽 | 𝜶𝜽 , 𝜷𝜽

)
=
∏𝐾
𝑘=1 p

(
𝜃𝑘 |𝛼𝑘 , 𝛽𝑘

)
,

p
(
𝜻
��𝜶𝜻 , 𝜷𝜻

)
=
∏
𝑞,𝑑∈D p

(
𝜁𝑞,𝑑 |𝛼𝑞,𝑑 , 𝛽𝑞,𝑑

)
.

(4)

Again for brevity, we define 𝜶𝜽 = (𝛼𝑘 : 𝑘 ∈ (1, 2, . . . , 𝐾)), 𝜶𝜻 =(
𝛼𝑞,𝑑 : (𝑞, 𝑑) ∈ D

)
and analogously 𝜷𝜽 and 𝜷𝜻 . Thus, 𝜶𝜽 , 𝜷𝜽 , 𝜶𝜻

and 𝜷𝜻 describe the epistemic uncertainty of our model, i.e., how
probable each possible value of 𝜽 and 𝜻 is predicted to be. To the
best of our knowledge, this is the first epistemic PBM and the first
epistemic click model altogether [7, 15, 18].

Finally, the question now becomes how to find the values for 𝜶𝜽 ,
𝜷𝜽 , 𝜶𝜻 and 𝜷𝜻 such that our epistemic model best predicts the true
𝜽 and 𝜻 values and an appropriate uncertainty about its predictions.
Following evidential deep learning methodology [3, 20], we search
for a model that maximizes the likelihood of the observed data:

L =E
[ ∏
𝑞,𝑑,𝑘

P
(
𝑀𝑞,𝑑,𝑘

��𝑁𝑞,𝑑,𝑘 , 𝜃𝑘 , 𝜁𝑞,𝑑 ) ���𝜶𝜻 , 𝜷𝜻 ,𝜶𝜽 , 𝜷𝜽
]
. (5)

Accordingly, our goal is to develop a method for optimizing 𝜶𝜽 , 𝜷𝜽 ,
𝜶𝜻 and 𝜷𝜻 to maximize the likelihood of our observed data. Because
the number of positions𝐾 is limited, we learn 𝜶𝜽 and 𝜷𝜽 directly (in
a lookup table). Conversely, since the number of document-query
pairs is enormous, we learn a neural network to predict 𝛼𝑞,𝑑 and
𝛽𝑞,𝑑 for a given feature vector x𝑞,𝑑 , thereby making our approach
generalizable to previously-unseen queries and documents.

3 Background: Naïve Monte Carlo Estimation
Since the likelihood is an expectation (5), it can be estimated unbi-
asedly through a straightforward Monte Carlo estimation [12]. We
can take 𝑆 samples for each of the 𝜃 and 𝜁 parameters according to
𝜶𝜽 , 𝜷𝜽 and 𝜶𝜻 , 𝜷𝜻 , which we group in vectors for convenience:

𝜃
(𝑖 )
𝑘

∼ Beta
(
𝛼𝑘 , 𝛽𝑘

)
, 𝜽̃

(𝑖 )
=
(
𝜃
(𝑖 )
1 , . . . , 𝜃

(𝑖 )
𝐾

)
, (6)

𝜁
(𝑖 )
𝑞,𝑑

∼ Beta
(
𝛼𝑞,𝑑 , 𝛽𝑞,𝑑

)
, 𝜻̃

(𝑖 )
=
(
𝜁
(𝑖 )
𝑞,𝑑

: (𝑞,𝑑) ∈ D
)
. (7)

We can evaluate the probability 𝐿̃ (𝑖 ) = 𝐿̃
(
𝜻 (𝑖 ), 𝜽 (𝑖 ) ) of our observa-

tions, conditioned on the value of a single sample of the position
bias 𝜽̃ (𝑖 ) and the relevance values 𝜻̃ (𝑖 ) :

𝐿̃ (𝑖 ) ≜
∏
𝑞,𝑑,𝑘

(
𝑁𝑞,𝑑,𝑘

𝑀𝑞,𝑑,𝑘

) (
𝜃
(𝑖 )
𝑘
𝜁
(𝑖 )
𝑞,𝑑

)𝑀𝑞,𝑑,𝑘 (
1 − 𝜃 (𝑖 )

𝑘
𝜁
(𝑖 )
𝑞,𝑑

)𝑊𝑞,𝑑,𝑘
. (8)

The mean value of 𝐿̃ (𝑖 ) provides an unbiased estimate of the likeli-
hood of our model, additionally, the gradient of the likelihood can

be unbiasedly estimated with the log-derivative trick [36]:

L̃ ≈ 1
𝑆

𝑆∑︁
𝑖=1

𝐿̃ (𝑖 ) , ∇L ≈ 1
𝑆

𝑆∑︁
𝑖=1

𝐿̃ (𝑖 )
(
∇ log p

(
𝜻 (𝑖 ) |𝜶𝜻 , 𝜷𝜻

)
+∇ log p

(
𝜽 (𝑖 ) |𝜶𝜽 , 𝜷𝜽

) )
.

(9)

4 Method: Optimizing the Epistemic PBM
The main challenge of estimating (9) is that it involves averaging
over incredibly small values, this results in numerical precisions
issues and exuberates variance-related problems during optimiza-
tion. We propose numerically stable computation, conditioning on
partial samples and self-normalization to overcome this challenge.

4.1 Numerical stability for loss estimation
Consider the log-value of the likelihood: 𝓁(𝜽 , 𝜻 ) ≜ log(𝐿(𝜽 , 𝜻 )) .
Accordingly, the mean in (9) can done in the log space with these
log-values 𝓁 (𝑖 ) of the likelihood samples 𝐿̃ (𝑖 ) :

log
(
L̃
)
= log

( 1
𝑆

𝑆∑︁
𝑖=1

e𝓁 (𝑖 ) )
= log

( 𝑆∑︁
𝑖=1

e𝓁 (𝑖 ) ) − log(𝑆) . (10)

The log-sum-exp operation [4], LSE : R𝑆→R, is commonly used
to avoid underflow when operating very small numbers. The LSE
can thus give a more stable estimate of the log-likelihood:

log
(
L̃
)
= LSE

(
𝓁
(1) , . . . , 𝓁 (𝑆 ) ) − log(𝑆). (11)

We note that while LSE improves stability, it is not immune to
numerical precision errors. In particular, if one of the samples 𝓁 (𝑖 )

dominates the others by being much larger: ∀𝑗 ≠ 𝑖, 𝓁 (𝑖 ) >> 𝓁
( 𝑗 ) ,

then LSE(𝓁 (1) , . . . , 𝓁 (𝑆 ) ) ≈ max(𝓁 (1) , . . . , 𝓁 (𝑆 ) ) = 𝓁
(𝑖 ) . Since: we

can expect an underestimate of the log-likelihood. A key-insight
is that this issue is less likely if the values over which the LSE is
computed are closer to each other.

4.2 Conditioning on position bias
For brevity, we use 𝐽𝑞,𝑑,𝑘 to denote the probability of𝑀𝑞,𝑑,𝑘 clicks
given 𝑁𝑞,𝑑,𝑘 displays and specific values for 𝜃𝑘 and 𝜁𝑞,𝑑 :

𝐽𝑞,𝑑,𝑘 (𝜃𝑘 , 𝜁𝑞,𝑑 ) = 𝐽𝑞,𝑑,𝑘 = P
(
𝑀𝑞,𝑑,𝑘 |𝑁𝑞,𝑑,𝑘 , 𝜃𝑘 , 𝜁𝑞,𝑑

)
. (12)

Similarly, the probability of the observed clicks at every position
for a single item-pair with comparable conditionals is:

𝐽
𝑞,𝑑

(
𝜽 , 𝜁𝑞,𝑑

)
= 𝐽

𝑞,𝑑
=
∏
𝑘

𝐽𝑞,𝑑,𝑘
(
𝜃𝑘 , 𝜁𝑞,𝑑

)
. (13)

We proceed by replacing the conditional on the specific values of
the relevance 𝜁𝑞,𝑑 with our epistemic parameters 𝛼𝑞,𝑑 , 𝛽𝑞,𝑑 , however,
we keep the condition on specific values for the position bias 𝜽𝑘 :

J
𝑞,𝑑

(
𝜽 , 𝛼𝑞,𝑑 , 𝛽𝑞,𝑑

)
= J

𝑞,𝑑
= E
𝜁𝑞,𝑑

[
𝐽
𝑞,𝑑

(
𝜽 , 𝜁𝑞,𝑑

) ��𝜽 ] . (14)

We rewrite the likelihood (5) as:

L =E
𝜽

[∏
𝑞,𝑑

E
𝜻𝑞,𝑑

[
𝐽
𝑞,𝑑

���𝜽 ] ] =E
𝜽

[∏
𝑞,𝑑

J
𝑞,𝑑

]
. (15)

The variance of an expectation conditioned on a variable is guaran-
teed to be smaller or equal than the total variance.

To construct an estimator, we first divide our sampling procedure
to separately take 𝑆pos samples 𝜽 (𝑖 ) and 𝑆rel samples 𝜁 ( 𝑗 )

𝑞,𝑑
for every
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query-item pair. Subsequently, we can estimate J
𝑞,𝑑

using a single
sample 𝜽 (𝑖 ) while averaging over the 𝑆rel samples 𝜁 ( 𝑗 )

𝑞,𝑑
:

J̃
𝑞,𝑑

(
𝜽 (𝑖 ) , 𝛼𝑞,𝑑 , 𝛽𝑞,𝑑

)
= J (𝑖 )

𝑞,𝑑
=

1
𝑆rel

𝑆rel∑︁
𝑗=1

𝐽
𝑞,𝑑

(
𝜃
(𝑖 )
𝑘
, 𝜁

( 𝑗 )
𝑞,𝑑

)
. (16)

Based on (15), we estimate the log-likelihood with LSE:

log
(
L̃
)
≈ LSE

(∑︁
𝑞,𝑑

log J̃ (1)
𝑞,𝑑

, . . . ,
∑︁
𝑞,𝑑

log J̃ (𝑆pos )
𝑞,𝑑

)
−log

(
𝑆pos

)
. (17)

Importantly, the intermediate estimator (16) only concerns an ex-
pectation over a single random variable 𝜁𝑞,𝑑 , and (given the interme-
diate estimates) the log-likelihood estimator (17) only concerns an
expectation over the𝐾 random variables in 𝜽 . Thereby, the variance
of both these estimators is lower than for (9).

4.3 Gradient estimation with self-normalization
Inspired by self-normalized importance sampling [5, 33], we ap-
ply self-normalization by dividing the 𝐿̃ (𝑖 ) values by the estimated
overall likelihood L̃; we note that this is equivalent to optimizing
the log-likelihood since: ∇ log(L) = ∇L

L . Importantly, this main-
tains the direction of the gradient whilst also normalizing the small
values for 𝐿̃ (𝑖 ). Furthermore, self-normalization can be computed
more stably with a softmax 𝝈 using LSE:

𝝈𝑖 (𝑧1, · · · , 𝑧𝑆 ) ≜ 𝝈 (𝑧𝑖 ) ≜ e𝑧𝑖−LSE(𝑧1,...,𝑧𝑆 ). (18)
Since the outermost expectation in (17) is over position bias samples,
the ∇pos gradient after self-normalization is quite straightforward:

∇pos log
(
L̃
)
≜

1
𝑆pos

𝑆pos∑︁
𝑖=1

(
𝝈
(∑︁
𝑞,𝑑

log J̃ (𝑖 )
𝑞,𝑑

)
∇pos log p

(
𝜽 (𝑖 ) |𝜶𝜽 , 𝜷𝜽

) )
.

For ∇rel, we estimate the gradient of (17) with:

∇rel log
(
L̃
)
≈ 1
𝑆pos

𝑆pos∑︁
𝑖=1

©­«𝝈
(∑︁
𝑞,𝑑

log J̃ (𝑖 )
𝑞,𝑑

)∑︁
𝑞,𝑑

∇relJ̃ (𝑖 )
𝑞,𝑑

J̃ (𝑖 )
𝑞,𝑑

ª®¬ , (19)

where ∇relJ̃ (𝑖 )
𝑞,𝑑

is an estimate for the sample 𝜽 (𝑖 ) :

∇rel J̃ (𝑖 )
𝑞,𝑑

≈ 1
𝑆rel

𝑆rel∑︁
𝑗=1

𝐽
(𝑖, 𝑗 )
𝑞,𝑑

∇rel log
(
p
(
𝜁
( 𝑗 )
𝑞,𝑑

|𝛼𝑞,𝑑 , 𝛽𝑞,𝑑
) )
. (20)

Thus, through numerically-stable self-normalization, we deal with
near-zero likelihoods for samples; equivalently, self-normalization
results in the gradients of the log-likelihood.

5 Experiments and Conclusion
We perform an experiment on two datasets: MSLR-Web10K [30]
(Fold #1) and Istella-S [9] to evaluate how well our epistemic PBM
can predict clicks and whether its epistemic distributions capture
uncertainty appropriately. We simulate 105 query-interactions by
uniformly sampling queries over the train, validation and test sets
(with replacement). Simulated clicks are sampled from a PBM with
𝜃𝑘 = 1

𝑘
and 𝜁𝑞,𝑑 = 0.9

4 𝑦𝑞,𝑑 + 0.1 where 𝑦𝑞,𝑑 ∈ {0, 1, 2, 3, 4} are
the datasets’ relevance labels for item-query pairs. The logging
policy ranker is a neural-network (2 hidden layers of 64 units)
Plackett-Luce ranking model [24] optimized on 30 random training-
set queries in a supervised manner (using the relevance labels). For

each sampled query, a ranking with𝐾 = 5 positions is sampled from
the policy ranker. In summary, to simulate click data, we sample 105
queries from each dataset, sample a ranking for each query sample,
and subsequently, sample clicks for the ranking from the ground-
truth PBM. For our epistemic PBM, we perform optimization 1500
epochs on a neural network (3 hidden layers of 64, 64 and 32 hidden
units respectively) to predict the relevance parameters 𝜶𝜻 , 𝜷𝜻 and a
lookup table for the 𝐾 position bias parameters 𝜶𝜽 , 𝜷𝜽 . All reported
results are based on 15 independently repeated runs.

We start by evaluating whether our proposed techniques increase
the capability of epistemic PBM to predicting clicks. Figure A1 display
the learning curves in terms of log-likelihood of the test-set clicks
over 1500 training epochs of models optimized with different com-
binations of our proposed techniques. Clearly, self-normalization
and conditioning reach a much higher log-likelihood than the naïve
estimator; baseline-corrections improve performance except when
conditioning is also applied. The combination of self-normalization
and conditioning reaches the highest performance and converges
in the fewest epochs, therefore, we conclude that our techniques
improve the predictive abilities of our epistemic PBM considerably.

Furthermore, we consider whether the epistemic PBM can reach
comparable predictive performance as the traditional pointwise PBM.
We turn to Figure A1 again and compare the performance of the
pointwise PBM and the epistemic PBM optimized with self-normal-
ization and conditioning. Surprisingly, the epistemic PBM outper-
forms the pointwise PBM immediately, and converges at a substan-
tially higher log-likelihood. At first glance, this may be unexpected,
as one may expect a tradeoff between the uncertainty quantification
and likelihood maximization of the epistemic PBM, but no such
tradeoff seems to be present. The pointwise PBM is known to be
very sensitive to its initial parameters, i.e., Chuklin et al. [7] state
that they should start near the true parameters for the best effec-
tiveness, whereas we applied random initializations. In contrast,
the epistemic PBM can start with a prior that gives all possible
parameters equal epistemic probability, thereby avoiding tuning
the initialization parameters, possibly explaining the difference.
Regardless of the underlying reason, we conclude that the epistemic
PBM provides better predictive performance than the pointwise PBM.

Finally, we wish to analyze whether the learned distributions of
the PBM represent epistemic uncertainty accurately. Unfortunately,
to the best of our knowledge, there exists no objective methodol-
ogy for evaluating epistemic knowledge. Nevertheless, Figure A2
and A3 display several learned distributions for the position bias
parameters, in addition to the pointwise predictions. From the place-
ments of the means of the distributions, a similar trend as for the
likelihood can be seen: the epistemic PBM with self-normalization
and conditioning is more accurate at predicting the position bias
parameters than the others. Intuitively, the widths of its distribu-
tions look appropriate; given that this model also has the highest
likelihood, it appears to capture a true variability over possible
parameter choices. Consequently, at best we can conclude that
our epistemic PBM with self-normalization and conditioning appears
to be better at capturing prediction uncertainty than without those
techniques and also better than the pointwise PBM.

In this work, we introduced the first epistemic click model using
evidential deep learning on epistemic distributions of a PBM.
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Appendix

Istella-S MSLR-Web10k
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Figure A1: Log-Likelihood on test-set over training 1500 epochs as predicted by models trained with different methods: Naïve
M.C. (9), baseline corrections (b.c.), conditioning (Section 4.2) and the traditional pointwise PBM and combinations of methods.
X-axis: epochs; Y-axis: log-likelihood of clicks on test-set; The shaded areas estimate the 95% confidence intervals computed
using a Student’s 𝑡−distribution with 14 DoF, based on data from the 15 training sessions.
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Figure A2: Learned epistemic position bias distributions and pointwise predictions (p.w.) on the Istella-S dataset. The X-axes
represent a 𝜃𝑘 domain. The Y-axis the value of predicted distribution for 𝜃𝑘 by different methods.
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Figure A3: Learned epistemic position bias distributions and pointwise predictions (p.w.) on the MSLR-Web10k dataset. The
X-axes represent a 𝜃𝑘 domain. The Y-axis the value of predicted distribution for 𝜃𝑘 by different methods.
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