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1 Introduction
Modern learning to rank (LTR) approaches often rely on historical
user interaction data such as clicks due to their relative abundance
compared to other types of interactions [14–16, 21]. However, user
click data is also known to be affected by various forms of statistical
biases, e.g. position bias [25, 32], whereby documents that were
more likely to be ranked higher by the production (logging) policy
are also more likely to be observed and thus interacted with by
users [25]. As such, off-policy learning and evaluation methods rely
on the information about the logging policy to correct for such
forms of bias [6, 13, 25].

Importantly, in most cases, including under the widely-used
position-based model (PBM) click-model [5, 6], this requires the
knowledge of the placement probabilities of each document across
every position. However, for most ranking policies the only known
exact solution is to iterate over all possible rankings, summing up
the probabilities of those where the document is observed at the
desired rank. This, however, is generally not feasible unless the
number of documents is very low [22, 23].

To our knowledge, the only commonly used alternative is to ap-
proximate these probabilities by sampling a large number of rank-
ings and counting the occurrences of every document at each posi-
tion [10, 23]. However, in practice, sampling enough rankings for a
sufficiently good probability estimate may not be computationally
feasible, especially if these probabilities cannot be pre-computed
or need to be re-computed multiple times [3, 7, 22]. On the other
hand, sampling enough rankings may be especially difficult for
queries with a high number of candidate documents or where the
logging policy assigns high probabilities only to a small subset of
documents at each rank. In both cases many rank-document pairs
may instead end up without a single relevant sample.

To address this issue, we propose a new efficient way to calculate
these placement probabilities for the popular Plackett-Luce (PL)
ranking model [4, 7, 22, 23, 27]. We show that under this model,
due to its connection to Gumbel distribution, the placement proba-
bilities can also be seen as the expectation of a Poisson binomial
random variable over the document scores. By leveraging this in-
terpretation and the known connection of Poisson binomial to
convolutions [1, 9] along with numerical integration, we propose
a novel approximation approach for estimating the probability of
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a document being placed at a ranking position. Importantly, we
argue that despite being an approximation, our approach is effec-
tively exact when evaluating it over a practically feasible number
of points. Our experiments also confirm the significant gains in
accuracy and the efficiency of our proposed method compared to
the standard sampling approach. Altogether, our method opens the
door for a new direction of more exact propensity estimation; and
thereby, we hope that it motivates for a wider use of PL policies for
off-policy ranking evaluation and optimization applications.

2 Background
For a query 𝑞, the main task of LTR is to select 𝐾 of the can-
didate documents 𝑑 ∈ 𝐷 and present them in a form of an or-
dered ranking 𝑦 = [𝑦1, . . . , 𝑦𝐾 ] [19]. The quality of a stochas-
tic ranking policy 𝜋 assigning a probability to every ranking 𝑦
measured by the expected number of clicks 𝑐 ∈ {0, 1} can be ex-
pressed by ΔLTR (𝑞) = E𝑦∼𝜋,𝑐

[ ∑𝐾
𝑘=1 𝑐 (𝑦𝑘 )

]
. In practice, this quan-

tity is often estimated using historical user interaction data with
rankings produced by production (logging) policy 𝜋 of the form
{𝑞,𝑦, 𝑐, 𝜋0}𝑛𝑖=1 [16, 21]. Importantly, not all documents in the rank-
ing 𝑦 may actually be observed by the user. For instance, under
the commonly used PBM, the probability that the user observes
document 𝑑 depends on Pr𝜋 (𝑑 = 𝑦𝑘 ), i.e., the probability of policy
𝜋 placing 𝑑 in each position 𝑘 ∈ {1, . . . , 𝐾}, and the probability of
𝑂 (𝑘) ∈ {0, 1} – the user observing the contents of that position.
Then using inverse propensity scoring (IPS) a possible unbiased
off-policy estimate is [16, 25]:

Δ̂=

𝑛,𝐾∑︁
𝑖,𝑘=1

𝑤 (𝑦𝑘 , 𝑘)𝑐 (𝑦𝑘 ),𝑤 (𝑑, 𝑘) =
∑𝐾
𝑘=1 Pr(𝑂 (𝑘))Pr𝜋 (𝑑 = 𝑦𝑘 )∑𝐾
𝑘=1 Pr(𝑂 (𝑘))Pr𝜋0 (𝑑 = 𝑦𝑘 )

. (1)

Importantly, off-policy estimation based on both the PBM and
other click models [17, 24, 30, 31] relies on the availability of correct
placement probabilities Pr𝜋 (𝑑 = 𝑦𝑘 ) [5, 26], which are difficult to
estimate for most stochastic ranking models [3, 7, 22, 29]. Under
the PL ranking model, for documents with (logit) scores𝑚𝑑 and
where 1[𝑑 ∉ 𝑦1:𝑖−1] denotes 𝑑 not being placed in a partial ranking
spanning positions 1 to 𝑖 − 1, the probability of full ranking 𝑦 is:

𝜋PL (𝑦) =
𝐾∏
𝑖=1

𝜋PL (𝑦𝑖 | 𝑦1:𝑖−1) =
𝐾∏
𝑖=1

𝑒𝑚𝑦𝑖 1[𝑦𝑖 ∉ 𝑦1:𝑖−1]∑ |𝐷 |
𝑑′=1 𝑒

𝑚𝑑′1[𝑑 ′ ∉ 𝑦1:𝑖−1]
. (2)

Importantly, under the PL model the placement probability of 𝑦𝑘
depends (solely) on the previously placed documents 𝑦1:𝑘−1. As
such, obtaining the closed-form document-position marginal prob-
ability Pr(𝑑 = 𝑦𝑘 ) =

∑
𝑦1:𝑘−1 𝜋 (𝑦1:𝑘−1)

∑
𝑦𝑘
𝜋 (𝑦𝑘 | 𝑦1:𝑘−1) requires

enumerating over all possible rankings 𝑦1:𝑘 .
Notably, previous works on the optimization of various PL objec-

tives leverage the connection of the PL distribution to the Gumbel
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distribution [3, 8, 20, 22]. In particular, a Gumbel(𝑚, 𝛽) random
variable with location𝑚 and spread 𝛽 is defined between [−∞,∞]
with the probability density function (PDF) 𝑓 and cumulative dis-
tribution function (CDF) 𝐹 of Gumbel(𝑚 𝑗 , 1) respectively being:

𝑓𝑗 (𝑥) = 𝑓 (𝑥 ;𝑚 𝑗 ,1) =𝑒𝑚 𝑗 −𝑥−𝑒𝑚𝑗 −𝑥
,

𝐹 𝑗 (𝑥) = 𝐹 (𝑥 ;𝑚 𝑗 ,1) =𝑒−𝑒
𝑚𝑗 −𝑥

.
(3)

The well-known Gumbel-max trick [12, 18], used for efficient sam-
pling from softmax and Plackett-Luce distributions, leverages the
fact that these distributions can also be represented in terms of
Gumbel(𝑚 𝑗 , 1) variables centered on |𝐷 | document scores𝑚 𝑗 . The
softmax sampling probability of a document Pr(𝑑) = Pr(𝑦1 = 𝑑)
is then equal to the probability of taking |𝐷 | samples ∀𝑗 : 𝐺 𝑗 ∼
Gumbel(𝑚 𝑗 , 1) and𝐺𝑑 being the highest [12]. Following similar in-
tuition, Ma et al. [20] show that under the PL model, the probability
that all documents from set 𝑌 are placed before all documents from
a disjoint complementary set 𝑌𝐶 s.t. 𝑌 ∪ 𝑌𝐶 = 𝐷 is:

Pr(𝑌 ≺ 𝑌𝐶 ) =
∫ ∞

−∞

∏
𝑖∈𝑌

(
1 − 𝐹𝑖 (𝑥)

)
𝑓 (𝑥 ; log(

∑︁
𝑗∈𝑌𝐶

𝑒𝑚 𝑗 ), 1)𝑑𝑥 . (4)

Intuitively, 𝑓 (𝑥 ; log(∑𝑗∈𝑌𝐶 𝑒
𝑚 𝑗 ), 1) represents the distribution of

the highest Gumbel sample𝐺 𝑗 ∈ 𝑌𝐶 and is itself a Gumbel variable,
whilst

∏
𝑖∈𝑌 (1 − 𝐹𝑖 (𝑥)) represents the probability that all 𝐺𝑖 ∈ 𝑌

exceed it. We now leverage this Gumbel-based intuition to derive
our estimator of Pr(𝑑 = 𝑦𝑘+1).

3 Method: Placement Propensity Estimation
We now propose a novel approach to accurately and efficiently
estimate the document-position placement probabilities under the
PL model. To this end, we leverage the connection between the
Plackett-Luce and Gumbel distributions.

We first note that the result in Equation 4 of Ma et al. [20] can
also be extended to three mutually exclusive sets: 𝑌𝑘\𝑑 of size 𝑘 that
does not include 𝑑 ; its complement 𝑌𝐶

𝑘\𝑑 that similarly excludes 𝑑 ;
and {𝑑} itself. Then the probability Pr(𝑌𝑘\𝑑 ≺ 𝑑 ≺ 𝑌𝐶

𝑘\𝑑 ) that 𝑑 is
placed after all documents in 𝑌𝑘\𝑑 and before all documents in 𝑌𝐶

𝑘\𝑑 ,
is equal to the probability that all𝐺𝑖 ∈ 𝑌𝑘\𝑑 are higher than𝐺𝑑 and
that all 𝐺 𝑗 ∈ 𝑌𝐶𝑘\𝑑 are lower than 𝐺𝑑 :

Pr(𝑌𝑘\𝑑 ≺ 𝑑 ≺ 𝑌𝐶
𝑘\𝑑 ) =

∫ ∞

−∞
𝑓𝑑 (𝑥)

∏
𝑖∈𝑌𝑘\𝑑

(
1 − 𝐹𝑖 (𝑥)

) ∏
𝑗∈𝑌𝐶

𝑘\𝑑

𝐹 𝑗 (𝑥)𝑑𝑥. (5)

A crucial observation is that Pr(𝑌𝑘\𝑑 ≺ 𝑑 ≺ 𝑌𝐶
𝑘\𝑑 ) represents the

probability of a specific partially sorted ranking 𝑌𝑘\𝑑 ≺ 𝑑 ≺ 𝑌𝐶
𝑘\𝑑

where 𝑑 is in position 𝑘 + 1. Therefore, the probability of observing
any partial ranking with 𝑑 in position 𝑘 + 1 is simply the sum over
all possible 𝑌𝑘\𝑑 ∈ Y𝑘\𝑑 . That, however, is exactly the probability
of 𝑑 being placed in position 𝑘 + 1 under the PL distribution, i.e. its
|𝐷 | − 𝑘 + 1’th order statistic:

Pr(𝑦𝑘+1 = 𝑑) =
∑︁
𝑌𝑘\𝑑

Pr(𝑌𝑘\𝑑 ≺ 𝑑 ≺ 𝑌𝐶
𝑘\𝑑 ) (6)

=

∫ ∞

−∞
𝑓𝑑 (𝑥)

∑︁
𝑌𝑘\𝑑

∏
𝑖∈𝑌𝑘\𝑑

(
1 − 𝐹𝑖 (𝑥)

) ∏
𝑗∈𝑌𝐶

𝑘\𝑑

𝐹 𝑗 (𝑥)𝑑𝑥. (7)

Importantly, in constrast to the closed-form solution in Section 2,
𝑌𝑘\𝑑 refers to a set of documents rather than a specific ranking, and
thus the relative order of its elements does not matter. In practice
this means that we do not need to consider all document permuta-
tions and only their combinations.

Nevertheless, explicitly iterating over all possible sets of size 𝑘 <

𝐾 may still be prohibitively expensive for most common ranking
sizes 𝐾 . To this end, we note that for a fixed value of 𝑥 we can
treat each 𝐺 𝑗 > 𝐺𝑑 as a success in a Bernoulli trial with its own
𝑝 𝑗 (𝑥) = 1 − 𝐹 𝑗 (𝑥) where all trials are independent (conditional on
𝑥). The summation in Equation 6 then reflects the probability of
the observed number of successes 𝑆 in |𝐷 | − 1 such trials being 𝑘 :

Pr(𝑆 = 𝑘 | 𝑑, 𝑥) =
∑︁
𝑌𝑘\𝑑

∏
𝑖∈𝑌𝑘\𝑑

𝑝𝑖 (𝑥)
∏
𝑗∈𝑌𝐶

𝑘\𝑑

(
1 − 𝑝 𝑗 (𝑥)

)
. (8)

𝑆 is thus a Poisson binomial variable whose success probabilities
𝑝 may be different for each 𝑥 . Combining Equations 7 and 8 and
integrating over all values of 𝑥 =𝐺𝑑 then yields:

Pr(𝑦𝑘+1 = 𝑑) =
∫ ∞

−∞
𝑓𝑑 (𝑥)

∑︁
𝑦1:𝑘\𝑑

∏
𝑖∈𝑦1:𝑘\𝑑

𝑝𝑖 (𝑥)
∏

𝑗∈𝑦𝐶1:𝑘\𝑑

(
1 − 𝑝 𝑗 (𝑥)

)
𝑑𝑥 (9)

=

∫ ∞

−∞
𝑓𝑑 (𝑥)Pr(𝑆 = 𝑘 | 𝑑, 𝑥)𝑑𝑥 = E𝐺𝑑

[
Pr(𝑆 = 𝑘 | 𝑑,𝐺𝑑 )

]
. (10)

As such, Pr(𝑦𝑘+1 = 𝑑) is the expected value of the Poisson binomial
probability of 𝑘 documents scoring above 𝑑 . This interpretation is
significant, as for a given value of 𝑥 the Poisson binomial distribu-
tion can be efficiently obtained without explicitly iterating over all
possible sets.

In particular, as suggested by Fernandez and Williams [9], Pois-
son binomial distributionwith trial success probabilities 𝑝1, . . . , 𝑝 |𝐷 |
can also be seen as a convolution 𝑐1: |𝐷 | = ∗ |𝐷 |

𝑖=1 [1− 𝑝𝑖 , 𝑝𝑖 ] over prob-
ability vectors ∀[1 − 𝑝𝑖 , 𝑝𝑖 ]. To that end, we use the Direct Convo-
lution (DC) algorithm of Biscarri et al. [1], who showed that the
convolution of the first 𝑘 − 1 documents 𝑐1:𝑘−1 with [1 − 𝑝𝑘 , 𝑝𝑘 ] is
[(1−𝑝𝑘 ) ·𝑐1:𝑘−11 ] ⊕

(
(1−𝑝𝑘 ) ·𝑐1:𝑘−12:𝑘 +𝑝𝑘 ·𝑐1:𝑘−11:𝑘−1

)
⊕ [𝑝𝑘 ·𝑐1:𝑘−1𝑘

]. Here
⊕ denotes the concatenation of two lists and 𝑐1:𝑘−1𝑚:𝑛 denotes the
entries of 𝑐1:𝑘−1 between indices𝑚 and 𝑛. Leveraging this recursive
relation and by noting that at each step we only need to keep up to
𝐾 + 1 first entries of each convolution, we can obtain the Poisson
binomial probabilities for the first 𝐾 ranks 𝑐1: |𝐷 |

1:𝐾+1 in 𝑂 ( |𝐷 |𝐾) time.
An important consideration, however, is that when simultane-

ously calculating Pr(𝑆 = 𝑘 | 𝑑, 𝑥) for all |𝐷 | documents in a query,
each document 𝑑 has to be excluded from its own convolution, as 𝑑
cannot appear in either 𝑌𝑘\𝑑 nor 𝑌𝐶

𝑘\𝑑 . To avoid explicitly comput-
ing a size |𝐷 | − 1 convolution |𝐷 | times, and inspired by the use of
divide-and-conquer algorithms for polynomial multiplication [11],
we thus propose the following scheme. We start by calculating the
convolution in both directions, i.e. 𝑐1: |𝐷 | and 𝑐 |𝐷 |:1, whilst caching all
intermediate results, e.g. 𝑐1:3 and 𝑐 |𝐷 |:5. The convolution 𝑐1: |𝐷 |\𝑑 that
excludes 𝑑 is then exactly 𝑐1:𝑑−1 ∗𝑐 |𝐷 |:𝑑+1. The entry associated with
𝑘 successes can then be obtained by summing over the entries of
𝑘+1’th anti-diagonal of (𝑐1:𝑑−1⊗𝑐 |𝐷 |:𝑑+1), where ⊗ denotes the outer
product. We can use the above approach to simultaneously calculate
Pr(𝑆 = 𝑘 | 𝑑, 𝑥) for all𝐷 and for all 𝑘 ≤ 𝐾 , resulting in the computa-
tional complexity of𝑂 ( |𝐷 |𝐾2). We note that it may also be possible



Sample-Free Almost-Exact Estimation of Plackett-Luce Propensities for Off-Policy Ranking Estimators CONSEQUENCES ’25, September 22, 2025, Prague, Czech Republic

to leverage the relation 𝑐1: |𝐷 |\𝑑
𝑘

= (𝑐1: |𝐷 |
𝑘

− 𝑝𝑑 · 𝑐1: |𝐷 |\𝑑
𝑘−1 )/(1 − 𝑝𝑑 ) to

further improve the computational complexity of our approach to
𝑂 ( |𝐷 |𝐾). However, in practice the high numerical stability of our
approach, which avoids division, may be preferred across most 𝐾 .

With the ability to efficiently calculate Pr(𝑆 = 𝑘 | 𝑑, 𝑥), we then
return to the other aspect of Equation 10. In particular, Pr(𝑑 = 𝑦𝑘+1)
requires integrating over all possible values 𝑥 that 𝐺𝑑 can take.
However, in practice almost all of the probability density of all
𝑓𝑑 will be concentrated between [𝑎, 𝑏] = [min𝑚 𝑗

+𝑐1,max𝑚 𝑗
+𝑐2],

where a reasonable choice of 𝑐1 and 𝑐2 may be some low and high
quantiles of a Gumbel(0, 1) distribution (s.t. 𝑐1 < 0 < 𝑐2):

Pr(𝑦𝑘+1 = 𝑑) ≈
∫ 𝑏=max𝑚𝑗

+𝑐2

𝑎=min𝑚𝑗
+𝑐1

𝑓𝑑 (𝑥)Pr(𝑆 = 𝑘 | 𝑑, 𝑥)𝑑𝑥. (11)

The form
∫ 𝑏
𝑎
𝑔(𝑥) is crucial, as integrals of that form can be effi-

ciently approximated with Gauss-Legendre quadrature using the
rule:

∫ 1
−1 𝑔(𝑥)𝑑𝑥 ≈ ∑𝑁

𝑖=1𝑤𝑖𝑔(𝑥𝑖 ). The integration points 𝑥𝑖 and as-
sociated weights 𝑤𝑖 are the first 𝑁 roots of the 𝑁 ’th Legendre
polynomial and can be pre-computed once and shared across the
whole dataset [2]. Using this form to represent Equation 10 and
applying change of variables to change the integration limits from
[−1, 1] to [𝑎,𝑏] then allows us to obtain our final estimator:

Pr(𝑦𝑘+1 = 𝑑) ≈ 𝛼
𝑁∑︁
𝑖=1

𝑤𝑖 𝑓𝑑 (𝛼𝑥𝑖 + 𝛽)Pr(𝑆 = 𝑘 | 𝑑, 𝛼𝑥𝑖 + 𝛽), (12)

where 𝛼 = (𝑏−𝑎)/2 and 𝛽 = (𝑎+𝑏)/2. Importantly, Gauss-Legendre
quadrature is highly accurate and the approximation is exact where
the approximated function 𝑔(𝑥) is a polynomial of degree 2(𝑁 − 1)
or lower [28]. Whilst Equation 11 itself is not a polynomial; our
observations indicate that the region spanning its values that are
meaningfully above 0 can usually be well approximated using poly-
nomials of degree < 20, suggesting that for a sufficiently great 𝑁
Equation 12 is sufficient to closely approximate 𝑃 (𝑦𝑘 = 𝑑). In prac-
tice, we observe that our approximation closely resembles the true
value Pr(𝑦𝑘+1 = 𝑑) and in our experiments does not significantly
change beyond 𝑁 = 200 points used to simultaneously calculate
∀𝑑, 𝑘 : Pr(𝑦𝑘+1 = 𝑑). We note that the optimal 𝑁 may differ in case
where𝑚 𝑗 are spaced far apart, as in that case 𝑓𝑑 at many points may
be close to 0, leading to fewer points being available to correctly
approximate the heavier regions of 𝑓𝑑 .

The final computational complexity of our new approach is
𝑂 (𝑁 |𝐷 |𝐾2), compared to𝑂 (𝐷!) for the naive approach described in
Section 2. Finally, we note that our estimator is fully differentiable
w.r.t. ∀𝑚 𝑗 and can thus be used to optimize objectives such as
ΔLTR, NDCG or exposure without the need for manual derivation
of gradient functions [22]. However, the scope of this abstract is
limited to evaluating the accuracy of the estimated propensities.

4 Results: Accuracy of Estimated Propensities
We now evaluate the accuracy of our proposed propensity estima-
tion method and contrast it with that of the sampling approach. In
particular, we examine the estimation accuracy of both methods,
as measured by the mean absolute error (MAE) over all document-
position combinations, where the true values are approximated by
the sampling-based approach with 108 sampled rankings. MAE is
calculated over 320 simulated queries with |𝐷 | = 200 documents.

M
A
E

10−3 10−2 10−1 100 101

10−5

10−4

10−3

Compute Time (seconds)
sampling, τ = 0.2
proposed, τ = 0.2

sampling, τ = 0.05
proposed, τ = 0.05

sampling, τ = 0.025
proposed, τ = 0.025

Figure 1: MAE of the sampling-based and proposed models
under varied per-batch compute time. Results are averages
over 320 independent queries, the difference between the best
and worst runs denoted by shading.

In all cases the logits𝑚𝑑 are sampled from the uniform distribu-
tion, where to evaluate the impact on the performance for different
policies, we further divide the logits by the temperature factor
𝜏 ∈ {0.2, 0.05, 0.025}. The sampling-based method is evaluated us-
ing 𝑁 ∈ [104, . . . , 107] samples, while our method evaluates the
sum in Equation 12 over 𝑁 ∈ {50, 100, 200, 500, 1000} points us-
ing the lowest and the highest 0.01’st percentiles of the standard
Gumbel distribution as 𝑐1 and 𝑐2 respectively.

Figure 1 shows the relationship between the MAE and the aver-
age time to compute the propensities for a batch of data in seconds
on an 𝐴100 GPU, with the shaded regions denoting the lowest and
the highest average error across runs. We can observe that both our
proposed as well as the sampling-based method can be used to esti-
mate document propensities, with both approaches also improving
when the number of samples or points is increased. Nevertheless,
our method is generally able to achieve over an order of magnitude
lower average error compared to the sampling approach when us-
ing 𝑁 = 100 points (requiring 0.02 seconds). In fact, our method
achieves its optimum performance at just 𝑁 = 200 (0.07 seconds),
suggesting high data-efficiency and in line with our discussion in
Section 3. Moreover, our method outperforms the sampling ap-
proach even when the latter runs for almost 19 seconds per batch,
i.e. over 270 times as long. As this improvement is also consistent
across different logit distributions, the above results overall suggest
that the proposed method is highly suited for propensity estimation
under the PL model.

5 Conclusion
Off-policy estimators in learning to rank rely on document place-
ment probabilities to correct for various forms of statistical bias.
However, obtaining a sufficiently good propensity estimate may
be computationally challenging. In this work we propose a novel
method for estimating these probabilities under the Plackett-Luce
(PL) ranking model. We show that our approach is both highly ac-
curate and more efficient compared to the existing sampling-based
approach. Our method thus reduces the time cost of propensity
estimation and opens the door for more accurate estimators under
PL policies in off-policy learning to rank.
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