

Unbiased Learning to Rank: Learning from Biased Ranking Feedback

Harrie Oosterhuis

September 4, 2019

University of Amsterdam oosterhuis@uva.nl https://staff.fnwi.uva.nl/h.r.oosterhuis

Based on the SIGIR 2019 tutorial made with Rolf Jagerman and Maarten de Rijke.

Introduction

Learning to Rank in Information Retrieval

Learning to Rank is vital to informational retrieval:

• Key component for **search** and **recommendation**.

Ranking in Information Retrieval

Learning to Rank in Information Retrieval

Learning to Rank is a core task in informational retrieval:

• Key component for **search** and **recommendation**.

Learning to Rank in Information Retrieval

Learning to Rank is a core task in informational retrieval:

• Key component for **search** and **recommendation**.

Traditionally learning to rank is **supervised** through **annotated datasets**:

• Relevance annotations for query-document pairs provided by human judges.

Some of the most substantial limitations of **annotated datasets** are:

• expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).

- expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).
- unethical to create in privacy-sensitive settings (Wang et al., 2016).

- expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).
- unethical to create in privacy-sensitive settings (Wang et al., 2016).
- impossible for small scale problems, e.g., personalization.

- expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).
- unethical to create in privacy-sensitive settings (Wang et al., 2016).
- impossible for small scale problems, e.g., personalization.
- stationary, cannot capture future changes in relevancy (Lefortier et al., 2014).

- expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).
- unethical to create in privacy-sensitive settings (Wang et al., 2016).
- impossible for small scale problems, e.g., personalization.
- stationary, cannot capture future changes in relevancy (Lefortier et al., 2014).
- not necessarily aligned with actual user preferences (Sanderson, 2010),
 i.e., annotators and users often disagree.

Learning from User Interactions

Learning from User Interactions: Advantages

Learning from user interactions solves the problems of annotations:

- Interactions are virtually free if you have users.
- User **behavior** is indicative of their **preferences**.

Learning from User Interactions: Advantages

Learning from user interactions solves the problems of annotations:

- Interactions are virtually free if you have users.
- User **behavior** is indicative of their **preferences**.

User interactions also bring their own difficulties:

• Interactions give implicit feedback.

- Noise:
 - Users click for unexpected reasons.
 - Often clicks occur **not because** of relevancy.

- Noise:
 - Users click for unexpected reasons.
 - Often clicks occur not because of relevancy.
 - Often clicks do not occur despite of relevancy.

- Noise:
 - Users click for unexpected reasons.
 - Often clicks occur not because of relevancy.
 - Often clicks do not occur despite of relevancy.
- Bias: Interactions are affected by factors other than relevancy:

- Noise:
 - Users click for unexpected reasons.
 - Often clicks occur not because of relevancy.
 - Often clicks do not occur despite of relevancy.
- Bias: Interactions are affected by factors other than relevancy:
 - Position bias: Higher ranked documents get more attention.

- Noise:
 - Users click for unexpected reasons.
 - Often clicks occur not because of relevancy.
 - Often clicks do not occur despite of relevancy.
- Bias: Interactions are affected by factors other than relevancy:
 - Position bias: Higher ranked documents get more attention.
 - Item selection bias: Interactions are limited to the presented documents.

- Noise:
 - Users click for unexpected reasons.
 - Often clicks occur not because of relevancy.
 - Often clicks do not occur despite of relevancy.
- Bias: Interactions are affected by factors other than relevancy:
 - Position bias: Higher ranked documents get more attention.
 - Item selection bias: Interactions are limited to the presented documents.
 - Presentation bias: Results that are presented differently will be treated differently.
 - ...

The Golden Triangle

Learning from User Interactions: Goal

Goal of unbiased learning to rank:

- Optimize a ranker w.r.t. relevance preferences of users from their interactions.
- Avoid being biased by other factors that influence interactions.

Counterfactual Evaluation

Counterfactual Evaluation: Introduction

Evaluation is incredibly **important before deploying** a ranking system.

However, with the limitations of annotated datasets, can we evaluate a ranker without deploying it or annotated data?

Counterfactual Evaluation: Introduction

Evaluation is incredibly **important before deploying** a ranking system.

However, with the limitations of annotated datasets, can we evaluate a ranker without deploying it or annotated data?

Counterfactual Evaluation:

Evaluate a new ranking function f_{θ} using historical interaction data (e.g., clicks) collected from a previously deployed ranking function f_{deploy} .

Counterfactual Evaluation: Full Information

If we **know** the **true relevance labels** $(y(d_i)$ for all i), we can compute any additive linearly decomposable IR metric.

In this talk we will assume relevance is binary:

$$rel(d_i) \in \{0, 1\},\$$

and minimize the **Average Relevant Position**:

$$\Delta(f_{\theta}, D, y) = \sum_{d_i \in D} \operatorname{rank}(d_i \mid f_{\theta}, D) \cdot y(d_i).$$

Counterfactual Evaluation: Full Information

$$y(d_1)=1$$
 Document d_1 $y(d_2)=0$ Document d_2 $y(d_3)=0$ Document d_3 $y(d_4)=1$ Document d_4 Document d_5

Counterfactual Evaluation: Partial Information

We often do not know the true relevance labels $(y(d_i))$, but can only observe implicit feedback in the form of, e.g., clicks:

- ullet A click c_i on document d_i is a **biased and noisy indicator** that d_i is relevant
- A missing click does **not** necessarily indicate non-relevance

$$y(d_1)=1$$
 Document d_1 $y(d_2)=0$ Document d_2 $y(d_3)=0$ Document d_3 $y(d_4)=1$ Document d_4 $y(d_5)=0$ Document d_5

$$y(d_1)=1$$
 Document d_1 $y(d_2)=0$ Document d_2 $y(d_3)=0$ Document d_3 $y(d_4)=1$ Document d_4 $y(d_5)=0$ Document d_5

$$y(d_1)=1$$
 Document d_1 $y(d_2)=0$ Document d_2 $y(d_3)=0$ Document d_3 $y(d_4)=1$ Document d_4 Document d_5

 $c_1 = 1$

$$y(d_1)=1$$
 Document d_1 $y(d_2)=0$ Document d_2 $y(d_3)=0$ Document d_3 $y(d_4)=1$ Document d_4 Document d_5

$$c_1 = 1$$

$$y(d_2) = 0$$
$$y(d_3) = 0$$
$$y(d_4) = 1$$
$$y(d_5) = 0$$

 $y(d_1) = 1$

Document
$$d_1$$

Document d_2

Document d_3

Document d_4

$$c_1 = 1$$

$$c_2 = 0$$

$$y(d_1)=1$$
 Document d_1 $c_1=1$ $y(d_2)=0$ Document d_2 $c_2=0$ $y(d_3)=0$ Document d_3 $y(d_4)=1$ Document d_4 Document d_5

$$y(d_1)=1$$
 Document d_1 $y(d_2)=0$ Document d_2 $y(d_3)=0$ Document d_3 $y(d_4)=1$ Document d_4 $y(d_5)=0$ Document d_5

$$c_1 = 1$$

 $c_2 = 0$

 $c_3 = 1$

$$y(d_1)=1$$
 Document d_1 $c_1=1$ $y(d_2)=0$ Document d_2 $c_2=0$ $y(d_3)=0$ Document d_3 $c_3=1$ $y(d_4)=1$ Document d_4 Document d_5

$$y(d_1)=1$$
 Document d_1 $c_1=1$ $y(d_2)=0$ Document d_2 $c_2=0$ $c_3=1$ $y(d_4)=1$ Document d_4 Document d_4 Document d_5

$$y(d_1)=1$$
 Document d_1 $c_1=1$ $y(d_2)=0$ Document d_2 $c_2=0$ $c_3=1$ $y(d_4)=1$ Document d_4 $c_4=0$ Document d_5

$$y(d_1)=1$$
 Document d_1 $c_1=1$ $y(d_2)=0$ Document d_2 $c_2=0$ $c_3=1$ $y(d_4)=1$ Document d_4 $c_4=0$ $c_5=0$

Remember that there are many reasons why a click on a document may **not** occur:

- Relevance: the document may not be relevant.
- Observance: the user may not have examined the document.
- Miscellaneous: various random reasons why a user may not click.

Remember that there are many reasons why a click on a document may **not** occur:

- Relevance: the document may not be relevant.
- Observance: the user may not have examined the document.
- Miscellaneous: various random reasons why a user may not click.

Some of these reasons are considered to be:

- Noise: averaging over many clicks will remove their effect.
- Bias: averaging will **not** remove their effect.

Counterfactual Evaluation: Examination User Model

If we **only** consider **examination** and **relevance**, a user click can be modelled by:

• The probability of document d_i being examined $(o_i = 1)$ in a ranking R:

$$P(o_i = 1 \mid R, d_i)$$

• The probability of a click $c_i = 1$ on d_i given its relevance $y(d_i)$) and whether it was examined o_i :

$$P(c_i = 1 \mid o_i, y(d_i))$$

 Clicks only occur on examined documents, thus the probability of a click in ranking R is:

$$P(c_i = 1 \land o_i = 1 \mid y(d_i), R) = P(c_i = 1 \mid o_i = 1, y(d_i)) \cdot P(o_i = 1 \mid R, d_i)$$

Counterfactual Evaluation: Naive Estimator

A naive way to estimate is to assume clicks are a unbiased relevance signal:

$$\Delta_{\textit{NAIVE}}(f_{\theta}, D, c) = \sum_{d \in D} \textit{rank}(d_i \mid f_{\theta}, D) \cdot c_i.$$

Counterfactual Evaluation: Naive Estimator

A **naive way** to estimate is to assume clicks are a unbiased relevance signal:

$$\Delta_{\textit{NAIVE}}(f_{\theta}, D, c) = \sum_{d_i \in D} \textit{rank}(d_i \mid f_{\theta}, D) \cdot c_i.$$

Even if no click noise is present: $P(c_i = 1 \mid o_i = 1, y(d_i)) = y(d_i)$, this estimator is biased by the examination probabilities:

$$\begin{split} \mathbb{E}_o[\Delta_{\textit{NAIVE}}(f_{\theta}, D, c)] &= \mathbb{E}_o\left[\sum_{d_i: o_i = 1 \land y(d_i) = 1} \textit{rank}(d_i \mid f_{\theta}, D)\right] \\ &= \sum_{d_i: y(d_i) = 1} P(o_i = 1 \mid R, d_i) \cdot \textit{rank}(d_i \mid f_{\theta}, D). \end{split}$$

Counterfactual Evaluation: Naive Estimator Bias

The biased estimator weights documents according to their examination probabilities in the ranking R displayed during logging:

$$\mathbb{E}_o[\Delta_{\textit{NAIVE}}(f_{\theta}, D, c)] = \sum_{d_i: y(d_i) = 1} P(o_i = 1 \mid R, d_i) \cdot \textit{rank}(d_i \mid f_{\theta}, D).$$

In rankings, **documents at higher ranks** are more likely to be examined: **position** bias.

Position bias causes logging-policy-confirming behavior:

 Documents displayed at higher ranks during logging are incorrectly considered as more relevant.

Inverse Propensity Scoring

Counterfactual Evaluation: Inverse Propensity Scoring

Counterfactual evaluation accounts for bias using Inverse Propensity Scoring (IPS):

$$\Delta_{IPS}(f_{\theta}, D, c) = \sum_{d_i \in D} \frac{\operatorname{rank}(d_i \mid f_{\theta}, D)}{P(o_i = 1 \mid R, d_i)} \cdot c_i,$$

- $rank(d_i \mid f_{\theta}, D)$: (weighted) rank of document d_i by ranker f_{θ} ,
- c_i : observed click on the document in the log,
- $P(o_i = 1 \mid R, d_i)$: examination probability of d_i in ranking R displayed during logging.

This is an unbiased estimate of any additive linearly decomposable IR metric.

Counterfactual Evaluation: Proof of Unbiasedness

If no click noise is present, this provides an **unbiased estimate**:

$$\begin{split} \mathbb{E}_o[\Delta_{\mathit{IPS}}(f_{\theta}, D, c)] &= \mathbb{E}_o\left[\sum_{d_i \in D} \frac{\mathit{rank}(d_i \mid f_{\theta}, D)}{P(o_i = 1 \mid R, d_i)} \cdot c_i\right] \\ &= \mathbb{E}_o\left[\sum_{d_i: o_i = 1 \land y(d_i) = 1} \frac{\mathit{rank}(d_i \mid f_{\theta}, D)}{P(o_i = 1 \mid R, d_i)}\right] \\ &= \sum_{d_i: y(d_i) = 1} \frac{P(o_i = 1 \mid R, d_i) \cdot \mathit{rank}(d_i \mid f_{\theta}, D)}{P(o_i = 1 \mid R, d_i)} \\ &= \sum_{d_i \in D} \mathit{rank}(d_i \mid f_{\theta}, D) \cdot y(d_i) \\ &= \Delta(f_{\theta}, D, y). \end{split}$$

Propensity-weighted Learning to

Rank

Propensity-weighted Learning to Rank (LTR)

The inverse-propensity-scored estimator can unbiasedly estimate performance:

$$\Delta_{\mathit{IPS}}(f_{\theta}, D, c) = \sum_{d_i \in D} \frac{\mathit{rank}(d_i \mid f_{\theta}, D)}{P(o_i = 1 \mid R, d_i)} \cdot c_i.$$

Similar to the **standard ranking objective** but **weighted** per document, can be optimized with **small adjustments** to **standard learning to rank methods**.

Propensity-weighted LTR: Results

Simulated results on the Yahoo! Webscope dataset (Chapelle and Chang, 2011) .

Recall that position bias is a form of bias where higher positioned results are more likely to be observed and therefore clicked.

Assumption: The **observation probability** only depends on the rank of a document:

$$P(o_i = 1 \mid i).$$

The objective is now to **estimate**, for each rank i, the propensity $P(o_i = 1 \mid i)$.

${\sf RandTop-} n \ {\sf Algorithm:}$

 $\mathsf{Document}\ d_1$

 $\mathsf{Document}\ d_2$

Document d_3

Document d_4

${\sf RandTop-} n \ {\sf Algorithm:}$

Document d_1	Document d_3		
Document d_2	Document d_4		
Document d_3	Document d_1		
Document d_4	Document d_2		

${\sf RandTop-} n \ {\sf Algorithm:}$

Document d_1	Document d_3	Document d_2
Document d_2	Document d_4	Document d_1
Document d_3	Document d_1	Document d_4
Document d_4	Document d_2	

${\sf RandTop-} n \ {\sf Algorithm:}$

Document d_1	Document d_3	Document d_2	Ran <mark>k 1</mark>
Document d_2	Document d_4	Document d_1	Ran <mark>k 2</mark>
Document d_3	Document d_1	Document d_4	Ran <mark>k 3</mark>
Document d_4	Document d_2	Document d_3	Ran <mark>k 4</mark>

Uniformly randomizing the top n results may negatively impacts users during logging.

There are various methods that minimize the impact to the user:

- RandPair: Choose a pivot rank k and only swap a random other document with the document at this pivot rank (Joachims et al., 2017).
- Interventional Sets: Exploit inherent "randomness" in data coming from multiple rankers (e.g., A/B tests in production logs) (Agarwal et al., 2017).

Uniformly randomizing the top n results may negatively impacts users during logging.

There are various methods that minimize the impact to the user:

- RandPair: Choose a pivot rank k and only swap a random other document with the document at this pivot rank (Joachims et al., 2017).
- Interventional Sets: Exploit inherent "randomness" in data coming from multiple rankers (e.g., A/B tests in production logs) (Agarwal et al., 2017).

Also methods that estimate bias without any randomization:

- Expectation-Maximization approach (Wang et al., 2018),
- Dual Learning Objective (Ai et al., 2018).

Applying Counterfactual LTR in

Practice

Overview of Application Process

Recommended steps to apply counterfactual LTR:

- A/B testing
- Interaction Logging
- Position bias estimation
- Counterfactual LTR
- Post-deployment evaluation

A/B Testing

Randomly assign a percentage of **users** to system B and the rest to system A. The differences in performance per group can **reliably compare A to B**.

Interaction Logging

Log every interaction that takes place and its context:

Actions taken by user:

• Query issued, clicks, purchases, dwell-time, ...

Actions taken by system:

 Items displayed, layout, descriptions displayed, prices offered, . . .

• Item information:

. . .

• Item features, popularity, category info, entity linking, . . .

• Contextual information:

• User info, time & date, mobile/web interface,

Interaction Logging

Log every interaction that takes place and its context:

Actions taken by user:

• Query issued, clicks, purchases, dwell-time, ...

Actions taken by system:

 Items displayed, layout, descriptions displayed, prices offered, . . .

• Item information:

. . .

• Item features, popularity, category info, entity linking, . . .

• Contextual information:

• User info, time & date, mobile/web interface,

About 1.250.000.000 results (0,59 seconds)

Document #1
https://www.document1.com
Snippet from first document.

Document #2
https://www.document2.com
Snippet from second document.

Document #3
https://www.document3.com
Snippet from third document.

user issued query

Disclaimer: I'm not a lawyer, check these decision with your legal department.

Settings

Position Bias Estimation

A position bias model needs to be inferred before counterfactual learning or evaluation.

Most efficient with randomization during logging:

- Random shuffle top-n.
- Randomly swap pairs of items.
- Apply different rankers during the same period of time (Automatically happens when A/B testing).

Position Bias Estimation

A position bias model needs to be inferred before counterfactual learning or evaluation.

Most efficient with randomization during logging:

- Random shuffle top-n.
- Randomly swap pairs of items.
- Apply different rankers during the same period of time (Automatically happens when A/B testing).

Less efficient but non-intrusive with no randomization:

• Estimate through Expectation-Maximization or a dual learning objective.

Position Bias Estimation

A position bias model needs to be inferred before counterfactual learning or evaluation.

Most efficient with randomization during logging:

- Random shuffle top-n.
- Randomly swap pairs of items.
- Apply different rankers during the same period of time (Automatically happens when A/B testing).

Less efficient but non-intrusive with no randomization:

• Estimate through Expectation-Maximization or a dual learning objective.

Remember that bias depends on the ranking layout,

i.e. layout changes \rightarrow bias model may need to be updated.

Performing Counterfactual Learning to Rank

Optimize using a counterfactual learning to rank method, the bias model and any logged data (no randomization needed).

The following choices have to be made:

- The choice of features the ranking model uses (logged data may limit your choices.).
- What ranking model to use? e.g. linear model, neural model, ...
- Model parameters: number of layers, activation functions, . . .
- Optimization parameters: learning rate, regularization weight, ...

All these choices can be made using unbiased evaluation,

Performing Counterfactual Learning to Rank

Optimize using a counterfactual learning to rank method, the bias model and any logged data (no randomization needed).

The following choices have to be made:

- The choice of features the ranking model uses (logged data may limit your choices.).
- What ranking model to use? e.g. linear model, neural model, ...
- Model parameters: number of layers, activation functions, . . .
- Optimization parameters: learning rate, regularization weight, ...

All these choices can be made using unbiased evaluation, massive speed boost to research and development.

Post-deployment Evaluation

Never blindly trust anything you may deploy to users:

 Before fully deploying a model, deploy to a small percentage and evaluate with A/B testing.

Errors can always sneak into the results of counterfactual evaluation:

- Bugs in code for counterfactual evaluation or learning, or any other part of the pipeline.
- Bias model may be incorrect or outdated.
- Explicit or implicit assumptions can be false for your users and application.

Conclusion

Conclusion

Take-away messages:

- Supervised approaches to learning to rank are limited.
 - Annotations often disagree with user preferences.

Conclusion

Take-away messages:

- Supervised approaches to learning to rank are limited.
 - Annotations often disagree with user preferences.
- User interactions solve this problem but bring **noise and biases**.

Conclusion

Take-away messages:

- Supervised approaches to learning to rank are limited.
 - Annotations often disagree with user preferences.
- User interactions solve this problem but bring noise and biases.
- Counterfactual approaches allow for unbiased learning to rank:
 - By modelling users' position bias, we can remove its effect during learning.
 - Only requires randomization to infer a user model.

Conclusion

Take-away messages:

- Supervised approaches to learning to rank are limited.
 - Annotations often disagree with user preferences.
- User interactions solve this problem but bring noise and biases.
- Counterfactual approaches allow for unbiased learning to rank:
 - By modelling users' position bias, we can remove its effect during learning.
 - Only requires randomization to infer a user model.
- Counterfactual evaluation predicts improvements to your system without deployment.

Final Message

Final message:

• Remember that unbiased LTR means unbiased LTR w.r.t. position bias,

Final Message

Final message:

 Remember that unbiased LTR means unbiased LTR w.r.t. position bias, always expect that there are more biases than we are aware of.

Final Message

Final message:

• Remember that unbiased LTR means unbiased LTR w.r.t. position bias, always expect that there are more biases than we are aware of.

Thank you for listening!

Notation

Notation Used in the Slides i

Definition	Notation	Example
Query	q	_
Candidate documents	D	_
Document	$d \in D$	_
Ranking	R	(R_1,R_2,\ldots,R_n)
Document at rank i	R_i	$R_i = d$
Relevance	$y:D\to\mathbb{N}$	y(d) = 2
Ranker model with weights $ heta$	$f_{\theta}:D\to\mathbb{R}$	$f_{\theta}(d) = 0.75$
Click	$c_i \in \{0, 1\}$	_
Observation	$o_i \in \{0, 1\}$	_
Rank of d when f_{θ} ranks D	$\mathit{rank}(d \mid f_{\theta}, D)$	$\mathit{rank}(d \mid f_{\theta}, D) = 4$

Notation Used in the Slides ii

Differentiable upper bound on $\mathit{rank}(d, \mid f_{\theta}, D)$	$\overline{\mathit{rank}}(d, f_{\theta}, D)$	_
Average Relevant Position metric	ARP	-
Discounted Cumulative Gain metric	DCG	-
Precision at k metric	Prec@k	-
A performance measure or estimator	Δ	_

Resources i

- Tensorflow Learning to Rank, allows for inverse propensity scoring: https://github.com/tensorflow/ranking
- Inverse Propensity Scored Rank-SVM:
 https://www.cs.cornell.edu/people/tj/svm_light/svm_proprank.html
- Data and code for comparing counterfactual and online learning to rank http://github.com/rjagerman/sigir2019-user-interactions

References i

- A. Agarwal, S. Basu, T. Schnabel, and T. Joachims. Effective evaluation using logged bandit feedback from multiple loggers. In *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 687–696. ACM, 2017.
- Q. Ai, K. Bi, C. Luo, J. Guo, and W. B. Croft. Unbiased learning to rank with unbiased propensity estimation. In *Proceedings of the 41st International ACM SIGIR conference on Research and Development in Information Retrieval*, pages 385–394. ACM, 2018.
- O. Chapelle and Y. Chang. Yahoo! Learning to Rank Challenge Overview. *Journal of Machine Learning Research*, 14:1–24, 2011.
- T. Joachims, A. Swaminathan, and T. Schnabel. Unbiased learning-to-rank with biased feedback. In *Proceedings of the Tenth ACM International Conference on Web Search and Data Mining*, pages 781–789. ACM, 2017.
- D. Lefortier, P. Serdyukov, and M. de Rijke. Online exploration for detecting shifts in fresh intent. In *CIKM 2014: 23rd ACM Conference on Information and Knowledge Management*. ACM, November 2014.

References ii

- T. Qin and T.-Y. Liu. Introducing letor 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013.
- M. Sanderson. Test collection based evaluation of information retrieval systems. *Foundations and Trends in Information Retrieval*, 4(4):247–375, 2010.
- X. Wang, M. Bendersky, D. Metzler, and M. Najork. Learning to rank with selection bias in personal search. In *Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval*, pages 115–124. ACM, 2016.
- X. Wang, N. Golbandi, M. Bendersky, D. Metzler, and M. Najork. Position bias estimation for unbiased learning to rank in personal search. In *Proceedings of the Eleventh ACM International* Conference on Web Search and Data Mining, pages 610–618. ACM, 2018.

Acknowledgments

All content represents the opinion of the author(s), which is not necessarily shared or endorsed by their employers and/or sponsors.