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ABSTRACT
This tutorial aims to weave together diverse strands of modern
Learning to Rank (LtR) research, and present them in a unified
full-day tutorial. First, we will introduce the fundamentals of LtR,
and an overview of its various sub-fields. Then, we will discuss
some recent advances in gradient boosting methods such as Lamb-
daMART by focusing on their efficiency/effectiveness trade-offs
and optimizations. Subsequently, we will then present TF-Ranking,
a new open source TensorFlow package for neural LtR models, and
how it can be used for modeling sparse textual features. Finally,
we will conclude the tutorial by covering unbiased LtR – a new
research field aiming at learning from biased implicit user feedback.

The tutorial will consist of three two-hour sessions, each focusing
on one of the topics described above. It will provide a mix of theo-
retical and hands-on sessions, and should benefit both academics
interested in learning more about the current state-of-the-art in
LtR, as well as practitioners who want to use LtR techniques in
their applications.
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1 OVERVIEW
This full-day tutorial is organized in three sessions lasting two
hours each. Together these sessions provide a wide overview of
recent advances in the field of Learning to Rank (LtR).

Session I: Efficiency/Effectiveness Trade-offs
We propose an analysis of the efficiency/effectiveness trade-offs
in Learning to Rank. In the last years, LtR, had a significant influ-
ence in the Information Retrieval field, with large research efforts
coming both from the academia and the industry. Indeed, efficiency
requirements must be fulfilled in order to make an effective research
product deployable within an industrial environment. The evalu-
ation of a model can be too expensive due to its size, the features
used and several other factors.

This session discusses the recent solutions that allow to build an
effective ranking model that satisfies temporal budget constrains
at evaluation time. We first introduce LtR solutions for a multi-
stage ranking pipeline with a focus on decision tree ensembles.
Then we present several complementary strategies for optimizing
the efficiency of a ranking forest including: feature analysis [19],
tree pruning [9], effectiveness optimization at training time [16],
approximate computation [3] and efficient traversal [5].

This session will be presented by Claudio Lucchese from the Ca’
Foscari University of Venice and Franco Maria Nardini from the
National Research Council of Italy.

Session II: Neural Learning to Rank using
TensorFlow
A number of open source packages harnessing the power of deep
learning have emerged in recent years and are under active de-
velopment, including TensorFlow [1], PyTorch [13], Caffe [7], and
MXNet [4]. Supervised learning is one of the main use cases of
deep learning packages. For example, one task in the ImageNet
competitions [15] is to predict image categories, which can be for-
mulated as a multi-class classification problem. However, compared
with the comprehensive support for classification or regression in
open-source deep learning packages, there is a paucity of support
for ranking problems.

To address this gap, we developed TensorFlow Ranking1: an
open-source library for training large-scale LtR models using deep

1https://github.com/tensorflow/ranking
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learning in TensorFlow [12]. The library is flexible and highly con-
figurable: it provides an easy-to-use API to support different scoring
mechanisms, loss functions, example weights, and evaluation met-
rics. In this hands-on tutorial, we aim to cover how TensorFlow
Ranking can be effectively employed in a variety of learning-to-rank
scenarios.

First, we will present a brief overview of neural LtR, TensorFlow
and Estimator frameworks. Then, we will introduce Tensorflow
Ranking components and APIs, and demonstrate how it can han-
dle advanced losses, scoring functions and sparse textual features.
Finally, we will provide hands-on codelabs using two existing LtR
datasets: MSLR-Web30k [14] and MS MARCO [10].

This session will be presented by Rama Kumar Pasumarthi, Se-
bastian Bruch, Michael Bendersky and Xuanhui Wang from Google
Research.

Session III: Unbiased Learning to Rank
User interactions provide great potential for LtR: they give valuable
implicit feedback and are easy to obtain in large amounts. However,
user interactions contain biases such as position bias: documents
displayed at higher ranks receive more attention. Naively learning
from interactions while ignoring such biases can lead to detrimental
performance. Consequently, the field of Unbiased LtR aims to learn
the true user preferences from their interactions, thus avoiding the
effect of biases. In this part we will cover and contrast the two main
approaches to Unbiased LtR: Counterfactual LtR and Online LtR.

Counterfactual LtR [8, 17] uses an explicit model position bias,
and through an inverse propensity weighing approach optimizes
LtR metrics without bias. In addition to the learning method, we
will discuss how models of position bias can be inferred [2, 18] and
other practical considerations.

Online LtR [20]methods directly interact with users, and perform
randomizations allowing them to deal with several biases. We will
discuss the important Dueling Bandit approach [20], as well as the
recent Pairwise approach [11].

Finally, we compare and contrast both approaches: on a theoret-
ical level and by looking at empirical comparisons [6]. We discuss
the situations for which each approach was designed, and the places
were they are applicable. This helps LtR practitioners to choose
between the two approaches.

This third session will be presented by Harrie Oosterhuis, Rolf
Jagerman, and Maarten de Rijke from the University of Amsterdam.

2 SUPPORTING MATERIALS
You can find more materials related to this tutorial on our website
http://ltr-tutorial-sigir19.isti.cnr.it/.
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