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The Online Setting



Interactive Algorithms

This course will focus on algorithms that learn from users by directly interacting with

them, we call this learning in the Online Setting.

These online algorithms can learn efficiently: they require few user interactions; and

very responsively: they can adapt to user behaviour almost immediately.
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The Online Setting for Ranking

Search and recommendation are some of the most vital parts of many

websites/products and rely heavily on ranking.

Learning user preferences is especially valuable in these settings.

However, most general online approaches: Bandit or Reinforcement Learning

algorithms are not very effective in ranking settings.

As a result, there were online methods designed specifically for ranking.
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Evaluation



Evaluation in the Online Setting

The big question of ranker evaluation:

• Do users prefer ranking model A over B?

Research and development is impossible without answering this question.
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Evaluation in the Online Setting

This course will discuss:

• The problems with offline approaches to ranker evaluation.

• What user interactions can tell us about their preferences.

• Interleaving: learning from the user while simultaneously helping them.

• Theoretical look at online evaluation methods.

• Multileaving: evaluation on a very large scale.
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Learning to Rank



Learning to Rank in the Online Setting

Most ranking models combine hundreds of ranking signals (features), these models

are optimized with machine learning.

Online Learning to Rank algorithms learn ranking models while simultaneously

providing a good user experience.

The potential for learning from user interactions is great, but it also brings many

difficulties.
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Learning to Rank in the Online Setting

This course will cover:

• The limitations of offline approaches to learning to rank.

• Difficulties in optimizing based on user interactions.

• Dueling Bandit Gradient Descent optimization using evaluation.

• Improvements in gradient estimation in the online setting.

• Most recent novel online approach.

• Future directions for online learning to rank.
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Goals for this Course



Goals for this course

At the end of this course, you should:

• be convinced of the importance of online methods.

• understand the most relevant algorithms in online evaluation and online

learning to rank.

• be capable of designing novel online methods yourself.

• apply online methods in practice.
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The slides of this presentation are available at:
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You can also click on my name in the RuSSIR program to get there.
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Introduction: Ranking Systems



Ranking Systems

Ranking systems are vital for making the internet accessible.

Instead of displaying millions of unordered results, they can present users a small

comprehensible selection.

Applications for ranking systems are very wide, search and recommendation are

practically everywhere.
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Ranking Systems: Schematic Example

Collection of objects.

User with a search task.

Ranking 
System

1 2 3 4 5 6 7 8 9 10

Ranking of objects.
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Ranking Systems: Examples
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Ranking Systems: Schematic Example Naming

Collection of documents.

User’s search query.

Ranking 
System

1 2 3 4 5 6 7 8 9 10

Ranking of documents.
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Importance of Evaluation



Evaluation for Ranking Systems

As ranking systems are very important, so is their evaluation.

Consider the following:

• You updated the ranking system of your product with an amazing new feature.

• How can you find out whether you improved the system?
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Evaluation Example

You have a great idea for a new ranking model!

With permission of your boss, you implement the model and put it in production.

After one week in production you see increases in ad-revenue!

Your boss is very excited.

Did your ranking model improve the previous model?

Possible explanations:

• Ranking quality is much better and people stay longer on your website

• Ranking quality is so bad that advertisements are more relevant than results.

• External factors cause people to be more active that particular week.

(Kohavi et al., 2013)
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Evaluation for Ranking Systems

In order to improve a ranking system i.e. research and development, an evaluation

method is needed that can recognize improvements:

• Is system A better than system B?

Without reliable evaluation changes to systems may have unintentional and

unexpected consequences.
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Traditional Evaluation



Evaluation Setting

Given two rankers A and B, for a query qi, a set of documents D, they each

produce different rankings:

A(qi, D) = Ri
A = [d1, d2, . . . dn] (1)

B(qi, D) = Ri
B = [dn+1, dn+2, . . . dn+m] (2)

According to what metric we choose A or B can be better, or equally good,

depending on where they place relevant documents.

In general, rankers that place more relevant documents higher are considered

better, (Sakai, 2007).
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Evaluation Metrics: Precision

Precision: How likely is a retrieved document to be relevant?

precision@K =
number of relevant results in top K

K
(3)
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Evaluation Metrics: Recall

Recall: How likely is a relevant document to be retrieved?

recall@K =
number of relevant results in top K

total number of relevant documents
(4)
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Evaluation Metrics: Normalized Discumulative Cumulative Gain

NDCG: Relevant documents at lower ranks should weigh less, i.e. discounted more.

Discounted Cumulative Gain:

DCG@K(R) =

K∑
i=1

2relevance label of document(R[i]) − 1

log2(i+ 1)
(5)

Normalized Discounted Cumulative Gain:

NDCG@K(R) =
DCG@K(R)

maxR′ DCG@K(R′)
. (6)
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Traditional Evaluation Setting

We have two ranking systems: A and B.

Given the previous metrics, what else do we need to compare them?
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Traditional Evaluation Requirements

In order to compute IR-metrics the following are required:

• The queries users will ask.

• The documents the systems will rank.

(A large pre-selection is made for each query, to avoid ranking entire world-wide-web.)

• Which documents are relevant for which queries.

16



Traditional Evaluation Requirements

In order to compute IR-metrics the following are required:

• The queries users will ask.

• The documents the systems will rank.

(A large pre-selection is made for each query, to avoid ranking entire world-wide-web.)

• Which documents are relevant for which queries.

16



Traditional Evaluation Requirements

In order to compute IR-metrics the following are required:

• The queries users will ask.

• The documents the systems will rank.

(A large pre-selection is made for each query, to avoid ranking entire world-wide-web.)

• Which documents are relevant for which queries.

16



Traditional Evaluation Requirements

In order to compute IR-metrics the following are required:

• The queries users will ask.

• The documents the systems will rank.

(A large pre-selection is made for each query, to avoid ranking entire world-wide-web.)

• Which documents are relevant for which queries.

16



Traditional Evaluation Requirements

Where to get these requirements?:

• The most common queries can be sampled from user logs.

• A pre-selection of documents can be retrieved using the systems.

• Human judges can annotate query-document pairs for relevance.
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Traditional Evaluation

How to kill a mockingbird

How relevant is this page

to the query?

1 Not relevant

2 A little relevant

3 Relevant

4 Very relevant

5 Perfectly relevant
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Problems with Offline Evaluation

Unfortunately offline evaluation has substantial limitations, annotated datasets are:

• time consuming and expensive to make (Qin and Liu, 2013; Chapelle and

Chang, 2011).

• unethical to create in privacy-sensitive settings (Wang et al., 2016).

• impossible for small scale problems e.g. personalization.

• stationary, cannot account for future changes in relevancy (Lefortier et al.,

2014).

• not necessarily aligned with actual user preferences (Sanderson, 2010),

i.e. annotators and users often disagree.
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User Interactions



Learning from users

A solution to the problems of traditional evaluation is to learn from users directly.

Instead of having annotators guess, why don’t we ask users if they are happy?
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Direct User Feedback

Is this result relevant?

Is this result relevant?

• Users hate giving feedback like this.

• The process is too invasive and considered annoying.

• Also vulnerable to abuse.
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User Behaviour

We can expect:

• People to act in their own interest.

• Users to behave according to what they want.

Thus, user behaviour to indirectly indicate user satisfaction.

We have to infer preferences from user behaviour,

this means it provides implicit feedback (Joachims et al., 2017a).
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Implicit User Feedback

Document #1
https://www.document1.com
Snippet from first document.

Document #2
https://www.document2.com
Snippet from second document.

Document #3
https://www.document3.com
Snippet from third document.

user issued query

What can we learn from this interaction?
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Implicit User Feedback: Example 1

What can we learn from this interaction?
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Implicit User Feedback: Example 2

What can we learn from this interaction?
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Implicit User Feedback: Lesson

Be careful with what you infer from a user interaction.

Two types of trouble:

• Noise: users often click for unexpected reasons.

• Bias: some documents are more likely to be clicked for other reasons.
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Eye-tracking studies

How do users look at results?

Source: http://www.mediative.com/ 27



Bias in interactions

Unavoidable biases in search:

• Position bias:

• documents placed higher are more likely to be considered.

• Selection bias:

• users will only click on documents you present them.
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Implicit Feedback

Methods that work with user interactions must:

• be robust to interaction noise.

• be able to handle position- and selection-bias.
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Related Approaches



A/B testing

Split the users in two groups, one group is given system A, the other system B.

The differences in behaviour allows for a comparison of the systems.

System A System B
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A/B testing: Advantages/Disadvantages

Split the users in two groups, one group is given system A, the other system B.

Advantages:

• Straightforward and common method, also outside of IR.

• Can test many aspects of user behaviour.

Disadvantages:

• Inefficient, requires a lot of user data.

• Tests have to run for a long time.

• Need to recognize individual users.
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Evaluation based on click logs

Use historical click logs to estimate performance of a ranker.

Based around removing the effect of bias in the collected data.

Advantages:

• Can be performed on historical data,

thus no new experiments have to be ran for a new system.

Disadvantages:

• Requires good estimates of position bias, this is not trivial.

• Does not work in cold-start cases.

Still a very active area of research: (Joachims et al., 2017b; Wang et al., 2018).
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Online Evaluation: The Idea



Online Evaluation

Online Evaluation methods have control over what to display to the user.

At the same time they:

• Decide what results to display to the user.

• Infer preferences from user interactions with the chosen results.

These methods can be much more efficient,

because they have (some) control over what data is gathered.
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Online Evaluation: Visualization

Online Evaluation methods have control over what to display to the user.

Query

Document

Document

Document

Document

Document

Document

Document

Document

Ranking 
System A

Ranking 
System B

Ranking B

Ranking A

Document

Document

Document

Document

Displayed Results

User
Seeing/Interacting

Online Evaluation
Algorithm

Deciding/Learning
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Online Evaluation: Requirements

An online evaluation algorithm should:

• Give reliable and correct results:

• Guarantee to provide correct comparison outcomes.

i.e. theoretical proof.

• Robust to interaction noise.

• Handle biases in user interactions.

• Provide good user experience:

• Methods should not interfere with user task.
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Balanced Interleaving



Balanced Interleaving

First online evaluation method by Joachims (2002a),

introduced the concept interleaving for evaluation.

Main idea:

1 Take the rankings of two systems (A & B) for a query.

2 Created an interleaved result list by combining the two lists.

3 Clicks indicate preferences between rankers.

4 A large number of clicks give a reliable preference signal.
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Balanced Interleaving: Algorithm

Algorithm 1 Balanced interleaving #1: construction

1: Input: rankings RA, RB, number of documents k

2: R1, R2 ← shuffle(RA, RB)

3: L← []; i1 ← 0; i2 ← 0

4: for i← 1, . . . , k do

5: if i1 ≤ i2 then

6: if R1[li] 6∈ L then

7: append(L,R1[i1])

8: end if

9: i1 ← i1 + 1

10: else

11: if R2[li] 6∈ L then

12: append(L,R2[i2])

13: end if

14: i2 ← i2 + 1

15: end if

16: end for
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Balanced Interleaving: Algorithm

In plain English:

1 randomly choose one of the rankers to begin

2 then the rankers take turns:

1 chosen ranker places their next document

unless it has already been placed

2 turn goes to the other ranker

3 repeat until k documents are placed

3 display resulting interleaving to user, observe clicks
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Balanced Interleaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6

Ranker A Ranker B

Interleaving

Ranker Turn
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Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6

Ranker A Ranker B

Interleaving

Ranker Turn

A
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Balanced Interleaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6Document 1

Ranker A Ranker B

Interleaving

Ranker Turn

A
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Balanced Interleaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6Document 1

Ranker A Ranker B

Interleaving

Ranker Turn

B
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Balanced Interleaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6Document 1

Document 2

Ranker A Ranker B

Interleaving

Ranker Turn

B
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Balanced Interleaving: Visualization
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Document 4

Document 2

Document 5

Document 1

Document 6Document 1

Document 2

Ranker A Ranker B

Interleaving
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Balanced Interleaving: Visualization

Document 1

Document 2
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Document 5

Document 1
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Document 2

Ranker A Ranker B

Interleaving

Ranker Turn
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Balanced Interleaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6Document 1

Document 2

Document 5

Ranker A Ranker B

Interleaving

Ranker Turn

B
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Balanced Interleaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6Document 1

Document 2

Document 5

Document 3

Ranker A Ranker B

Interleaving

Ranker Turn

A
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Balanced Interleaving: Algorithm

Inference of preference from clicks:

1 Determine the clicked document with the lowest displayed rank: dmax

2 Take the highest rank for dmax over the two rankers : imin

3 Count the clicked documents for each ranker at imin or above.

4 The ranker with the most clicks is preferred.
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Balanced Interleaving: Visualization

Document 1

Document 2
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Document 2

Document 5
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Balanced Interleaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6Document 1

Document 2

Document 5

Document 3

Ranker A Ranker B
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Lowest ranked click
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Balanced Interleaving: Visualization
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Document 5
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Balanced Interleaving: Visualization

Document 1

Document 2
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Balanced Interleaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6Document 1

Document 2

Document 5

Document 3

Ranker A Ranker B

Interleaving

One click 
received

Two clicks 
received
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Balanced Interleaving: Properties

The properties of balanced interleaving:

• Good user experience:

• User hardly affected by method.

• Experience will not be worse than that of the worst ranker.

• Correctness:

• Ranker that places relevant documents usually wins.

• Correct outcomes not guaranteed.
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Balanced Interleaving: Problematic Example

Document 1

Document 2

Document 3

Document 4

Document 2

Document 3

Document 4

Document 1

Ranker A Ranker B
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Balanced Interleaving: Problematic Example

Document 1

Document 2

Document 3

Document 4

Document 2

Document 3

Document 4

Document 1Document 1

Document 2

Document 3

Document 4

Ranker A Ranker B

Interleaving 1

Document 2

Document 1

Document 3

Document 4

Interleaving 2
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Balanced Interleaving: Problematic Example

Only a click on Document 1 can lead to a preference for ranker A.

Document 1

Document 2

Document 3

Document 4

Document 2

Document 3

Document 4

Document 1Document 1

Document 2

Document 3

Document 4

Ranker A Ranker B

Interleaving 1

Document 2

Document 1

Document 3

Document 4

Interleaving 2

A random click is more likely to lead to a preference for ranker B, this is very unfair.
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Overview: Interleaving

User Experience Correctness Source

Balanced Interleaving X (Joachims, 2002a)
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Team-Draft Interleaving



Team-Draft Interleaving: Introduction

Reaction to these problematic cases for Balanced Interleaving introduced by

Radlinski et al. (2008).

Designed to be unbiased under uniform random clicks.

Simpler method, based on how teams are selected for sport class in school.
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Team-Draft Interleaving: Algorithm Simple

In plain English:

1 Until k documents are placed:

2 1 Randomly choose ranker A or B.

2 Let chosen ranker place its next unplaced document.

3 Let other ranker place its next unplaced document.

4 Remember which ranker placed which document.

3 Present interleaving to user, observe clicks.

4 Ranker with the most clicks on its placed document wins.
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Team-Draft Interleaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6

Ranker A Ranker B

Interleaving

Ranker Turn
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Visualization
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Team-Draft Interleaving: Resolved Example

Team-Draft interleaving finds no preferences under random clicks.

All possible assignments:

A

B

A

B

AA

A

B

B

A

AB

B

A

A

B

BA

B

A

B

A

BB
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Team-Draft Interleaving: Comparison to A/B testing

From (Schuth et al., 2015b), power is an indication of sensitivity.
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Team-Draft Interleaving: Properties

Properties of Team-Draft interleaving:

• User experience:

• User hardly affected by method.

• Experience will not be worse than that of the worst ranker.

• Correctness:

• Ranker that places relevant documents usually wins.

• Does not make the same mistakes as Balanced Interleaving.

• Correct outcomes not guaranteed.
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Team-Draft Interleaving: Problematic Example

Note this example, where document 3 is the only relevant one.

Document 1

Document 2

Document 3

Document 4

Document 2

Document 3

Document 4

Document 1

Document 2

Document 1

Document 3

Document 4

Ranker A Ranker B

Document 2

Document 1

Document 3

Document 4

Document 1

Document 2

Document 3

Document 4

Document 1

Document 2

Document 3

Document 4

Ranker B should win, but in expectation no preference will be found.
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Overview: Interleaving

User Experience Correctness Source

Balanced Interleaving X (Joachims, 2002a)

Team-Draft Interleaving X (Radlinski et al., 2008)
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Fidelity in Online Evaluation

Simply solving some incorrect cases of the previous methods does not guarantee

correctness of a method.

Hofmann et al. (2013) introduced the idea of fidelity, which formalizes a level of

correctness for methods to obtain.
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Fidelity in Online Evaluation: Condition #1

Condition 1 for fidelity:

• If user clicks are independent from document relevance, i.e. random clicks,

then the interleaving method should not find any differences between rankers.

Rankers shouldn’t have an advantage due to factors other than relevance.
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Fidelity in Online Evaluation: Pareto Domination

Pareto domination identifies cases where the correct winner is unambiguous.

Ranker A pareto dominates ranker B if and only if:

• Ranker A ranks every relevant document at least as high as ranker B,

and there is at least one relevant document that ranker A ranks higher.

Reasonably ranker A should always be preferred over ranker B.
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Fidelity in Online Evaluation: Pareto Domination Visualized

Ranker A Pareto dominates ranker B, under any reasonable circumstances A should

be preferred.

Document 1

Document 2

Document 3

Document 4

Ranker A

Document 5

Document 1

Document 2

Document 3

Document 5

Ranker B

Document 4
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Fidelity in Online Evaluation: Condition #2

Condition 2 for fidelity:

• If user clicks are correlated with document relevance,

i.e. relevant documents are more likely to be clicked,

then a Pareto dominating ranker should win the comparison in expectation.

An unambiguous winner should always win the comparison (given enough clicks).
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Fidelity in Online Evaluation: Conditions

Thus to have fidelity a method should:

1 Not give rankers an advantage due to factors other than relevance.

2 Always prefer unambiguous winners in expectation (given enough clicks).
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Probabilistic Interleaving

Introduced by Hofmann et al. (2011) designed around the fidelity conditions.

Treats rankers as probability distributions over a set of documents.
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Probabilistic Interleaving: Rankers as Probability Distributions

A ranker A with the ranking:

RA(D) = [d1, d2, . . . dN ] (7)

then let rank(d,RA) be the rank of d in RA.

The distribution for ranker A is modelled by:

P (d|D,RA) = PA(d) =

1
rank(d,RA)τ∑

d′∈D
1

rank(d′,RA)τ
(8)

Renormalize after each document is removed, i.e. remove sampled document from D.
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Probabilistic Interleaving: Rankers as Probability Distributions

Document 1 Document 2 Document 3 Document 4 Document 5 Document 6 Document 7

Example of a possible document distribution.
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Probabilistic Interleaving: Proto-Method

Consider this proto-version of Probabilistic Interleaving:

1 Compute PA and PB from ranker A and B respectively.

2 Repeat until k documents placed:

1 Randomly choose PA or PB and sample a document d.

2 Place d and remember whether A or B was chosen.

3 Renormalize PA or PB after removing d.

3 Display to user and observe clicks.

4 Ranker with the most clicked documents wins comparison.
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6Document 2

Ranker A Ranker B

Interleaving

Ranker Turn

B

92



Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Visualization
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Probabilistic Interleaving: Proto-Method Fidelity

Does this method have Fidelity?

1 Could a ranker have an advantage due to factors other than relevance?

• Every ranker is equally likely to place at every rank.

• Thus expected number of clicks is equal under random interactions.

2 Will an unambiguous winners always win in expectation?

• Every ranker is equally likely to place at every rank.

• Dominating ranker is more likely to place relevant documents at each rank.

• If relevant documents are more likely to be clicked,

then the dominating ranker wins in expectation.

Quite trivial to show that this method has fidelity.
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Probabilistic Interleaving: Marginalization

The user does not see which ranker placed what documents,

thus their behaviour will not be affected by document assignments.

Probabilistic interleaving takes the proto-method and marginalizes over the

assignments:

• Instead of using the outcome based on the true ranker assignment,

calculate the expected outcome over all possible assignments.
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Probabilistic Interleaving: Expected Outcome Visualized
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Probabilistic Interleaving: Expected Outcome Visualized
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Probabilistic Interleaving: Expected Outcome

For rankings RA, RB, the interleaved list L, assignments T , and clicks c,

the outcome of a comparison can be noted as:

O(RA, RB, L, T, c) ∈ {−1, 0, 1} (9)

Since clicks are independent of the assignment T ,

we can marginalize over all possible assignments to reach an expected outcome:

E[O(RA, RB, L, c)] =
∑
T

P (T |RA, RB, L)O(RA, RB, L, T, c) (10)
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Probabilistic Interleaving: Expected Outcome Visualized
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Probabilistic Interleaving: Placement Probability

How do we calculate these probabilities?

We know the following:

P (Ti = A) =
1

2
(11)

P (Li = d|Ti = A) = PA(d) =

1
rank(d,RA)τ∑

d′∈D
1

rank(d′,RA)τ
(12)

P (Ti = A|Li = d) = ??? (13)
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Probabilistic Interleaving: Placement Probability

How do we calculate these probabilities?

We know the following:

P (Ti = A) =
1

2
(14)

P (Li = d|Ti = A) = PA(d) =

1
rank(d,RA)τ∑

d′∈D
1

rank(d′,RA)τ
(15)

P (Ti = A|Li = d) =
P (Li = d, Ti = A)

P (Li = d)
(16)
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Probabilistic Interleaving: Placement Probability

Using Bayes rule:

P (Ti = A|Li = d) =
P (Li = d, Ti = A)

P (Li = d)

111



Probabilistic Interleaving: Placement Probability

Using Bayes rule:

P (Ti = A|Li = d) =
P (Li = d, Ti = A)

P (Li = d)

=
P (Li = d|Ti = A)P (Ti = A)

P (Li = d|Ti = A)P (Ti = A) + P (Li = d|Ti = B)P (Ti = B)
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Probabilistic Interleaving: Placement Probability
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Probabilistic Interleaving: Placement Probability

Using Bayes rule:

P (Ti = A|Li = d) =
P (Li = d, Ti = A)

P (Li = d)

=
P (Li = d|Ti = A)P (Ti = A)

P (Li = d|Ti = A)P (Ti = A) + P (Li = d|Ti = B)P (Ti = B)

=
P (Li = d|Ti = A)

P (Li = d|Ti = A) + P (Li = d|Ti = B)

=
PA(d)

PA(d) + PB(d)
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Probabilistic Interleaving: Placement Probability

Thus we can calculate the placement probability for each document.:

P (Ti = A) =
1

2
(17)

P (Li = d|Ti = A) = PA(d) =

1
rank(d,RA)τ∑

d′∈D
1

rank(d′,RA)τ
(18)

P (Ti = A|Li = d) =
PA(d)

PA(d) + PB(d)
(19)

Two important observations:

• The outcome of a comparison is only dependent on the clicked documents.

• The assignment of a document is not dependent on other assignments.
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Probabilistic Interleaving: Smarter Marginalization

Thus we only have to consider the possible assignments of clicked documents:

Document 2
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Document 1

Document 5

Document 2

Document 6

Document 1

Document 5

Document 2

Document 6

Document 1

Document 5

Document 2

Document 6

Document 1

Document 5

Bringing the complexity from 2k to 2c.
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Probabilistic Interleaving: Method

This gives us the following method:

1 Compute PA and PB from ranker A and B respectively.

2 Repeat until k documents placed:

1 Randomly choose PA or PB and sample a document d.

2 Place d without remembering whether A or B was chosen.

3 Renormalize PA or PB after removing d.

3 Display to user and observe clicks.

4 Calculate the expected outcome marginalizing over all possible placements.

5 Expected winner wins the comparison.
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Probabilistic Interleaving: Visualization
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Probabilistic Interleaving: Visualization
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Probabilistic Interleaving: Visualization

Possible Document Assignments
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Probabilistic Interleaving: Properties

Properties of Probabilistic Interleaving:

• Correctness:

• Correct outcomes guaranteed w.r.t. fidelity.

• Marginalization does not affect the expected outcomes.

• Thus if proto-method has fidelity, so has this method.

• User experience:

• User experience not guaranteed.

• Every possible ranking can be displayed, albeit with different probabilities.
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Overview: Interleaving

User Experience Correctness Source

Balanced Interleaving X (Joachims, 2002a)

Team-Draft Interleaving X (Radlinski et al., 2008)

Probabilistic Interleaving X (Hofmann et al., 2011)
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Optimized Interleaving



Optimized Interleaving

Introduced by Radlinski and Craswell (2013) casts interleaving as an optimization

problem.

Interleavings should only contain top-documents from rankers, i.e. rankers should

always add their top document.

First step: determine the set of allowed interleavings.
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Optimized Interleaving: Allowed Interleavings
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Optimized Interleaving: Allowed Interleavings
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Optimized Interleaving: Allowed Interleavings
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Optimized Interleaving: Allowed Interleavings
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Optimized Interleaving: Scoring Function

Optimized interleaving can use different scoring functions that meet its requirements.

A click on a document d gives a preference score determined by how its ranked.

Common choices are:

1 Linear Rank Difference:

s(d,RA, RB) = δd = rank(d,RA)− rank(d,RB) (20)

2 Inverse Rank Difference:

s(d,RA, RB) = δd =
1

rank(d,RA)
− 1

rank(d,RB)
(21)
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Optimized Interleaving: Scoring Function Example

Given two rankers where RA = [1, 2, 3, 4] and RB = [2, 4, 3, 1] and using the Linear

Rank Difference scoring function, we see:

Interleaving δL1 δL2 δL3 δL4

[1, 2, 3, 4] 3 -1 0 -2

[1, 2, 4, 3] 3 -1 -2 0

[2, 1, 3, 4] -1 3 0 -2

[2, 1, 4, 3] -1 3 -2 0

[2, 4, 1, 3] -1 -2 3 0

[2, 4, 3, 1] -1 -2 0 3

130



Optimized Interleaving: Position Bias Assumption

Let’s assume that a user is only position biased, that means that only the position

determines the click probability:

P (click(position))
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Optimized Interleaving: Scoring Function Example

Given two rankers where RA = [1, 2, 3, 4] and RB = [2, 4, 3, 1] and using the Linear

Rank Difference scoring function, what distribution over interleavings should be

chosen?

Interleaving δL1 δL2 δL3 δL4 E[O] pL

[1, 2, 3, 4] 3 -1 0 -2 3P (click(1))− P (click(2))− 2P (click(4))

[1, 2, 4, 3] 3 -1 -2 0 3P (click(1))− P (click(2))− 2P (click(3))

[2, 1, 3, 4] -1 3 0 -2 −P (click(1)) + 3P (click(2))− 2P (click(4))

[2, 1, 4, 3] -1 3 -2 0 −P (click(1)) + 3P (click(2))− 2P (click(3))

[2, 4, 1, 3] -1 -2 3 0 −P (click(1))− 2P (click(2)) + 3P (click(3))

[2, 4, 3, 1] -1 -2 0 3 −P (click(1))− 2P (click(2)) + 3P (click(4))
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Optimized Interleaving: Optimization for Bias

If we take pL for the probability of interleaving L being displayed, then the expected

outcome can be written as:

E[O] =
∑
L∈L

(
pL

|L|∑
i=1

P (click(i))s(Li, RA, RB)

)
= 0 (22)

This becomes a linear optimization (or linear programming) task to find a pL to meet

this requirement.
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Optimized Interleaving: Scoring Function Example

Given two rankers where RA = [1, 2, 3, 4] and RB = [2, 4, 3, 1] and using the Linear

Rank Difference scoring function, a possible solution is:

Interleaving δL1 δL2 δL3 δL4 E[O] pL

[1, 2, 3, 4] 3 -1 0 -2 3P (click(1))− P (click(2))− 2P (click(4)) 0%

[1, 2, 4, 3] 3 -1 -2 0 3P (click(1))− P (click(2))− 2P (click(3)) 25%

[2, 1, 3, 4] -1 3 0 -2 −P (click(1)) + 3P (click(2))− 2P (click(4)) 0%

[2, 1, 4, 3] -1 3 -2 0 −P (click(1)) + 3P (click(2))− 2P (click(3)) 35%

[2, 4, 1, 3] -1 -2 3 0 −P (click(1))− 2P (click(2)) + 3P (click(3)) 40%

[2, 4, 3, 1] -1 -2 0 3 −P (click(1))− 2P (click(2)) + 3P (click(4)) 0%
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Optimized Interleaving: Scoring Function Example

Given two rankers where RA = [1, 2, 3, 4] and RB = [2, 4, 3, 1] and using the Linear

Rank Difference scoring function, a possible solution is:

Interleaving δL1 δL2 δL3 δL4 E[O] pL

[1, 2, 4, 3] 3 -1 -2 0 3P (click(1))− P (click(2))− 2P (click(3)) 25%

[2, 1, 4, 3] -1 3 -2 0 −P (click(1)) + 3P (click(2))− 2P (click(3)) 35%

[2, 4, 1, 3] -1 -2 3 0 −P (click(1))− 2P (click(2)) + 3P (click(3)) 40%

P (click(1))(3× 0.25− 1× 0.35− 1× 0.4) = 0

P (click(2))(−0.25 + 3× 0.35− 2× 0.4) = 0

P (click(3))(−2× 0.25− 2× 0.35 + 3× 0.4) = 0
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Optimized Interleaving: Properties

Properties of Optimized Interleaving:

• User experience:

• Strongest guarantees of all interleaving methods.

• Correctness:

• Method has fidelity (if optimized for it),

as long as the linear optimization is successful.

• Proven by brute-forcing that there is always a solution for top-10 rankings.

• Can be correct under other definitions as well.
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Overview: Interleaving

User Experience Correctness Source

Balanced X (Joachims, 2002a)

Team-Draft X (Radlinski et al., 2008)

Probabilistic X (Hofmann et al., 2011)

Optimized X X (Radlinski and Craswell, 2013)
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Multileaving



Extending Interleaving

Interleaving provides a reliable way to compare two rankers.

However, in many cases more than two rankers need to be compared:

• Parameter tuning.

• Multiple teams researching & developing.

In these cases A/B testing would be even more strenuous.
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Multileaving

Multileaving: extension of interleaving by Schuth et al. (2014).

Comparisons over a set of rankers R = {A,B, . . .}.

Goal of comparison is usually either:

• Find the best ranker in R.

• Find the preferences between every pair of rankers in R.
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Fidelity for Multileaving: Condition #1

Condition 1 for fidelity:

• If user clicks are independent from document relevance, i.e. random clicks,

then the interleaving method should not find any differences between any rankers.

Rankers shouldn’t have an advantage due to factors other than relevance.

This condition remains unchanged from interleaving.
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Fidelity for Multileaving: Condition #2

Condition 2 for fidelity:

• If user clicks are correlated with document relevance,

i.e. relevant documents are more likely to be clicked,

then a ranker that pareto dominates all other rankers should be expected to win.

An unambiguous best ranker should always win the comparison (given enough

clicks).

Same as interleaving when there are only two rankers.

Not the strongest condition possible.
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Fidelity for Multileaving: Conditions

Thus to have fidelity a method should:

1 Not give rankers an advantage due to factors other than relevance.

2 Always prefer an unambiguous best ranker in expectation.
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Team-Draft Multileaving



Team-Draft Multileaving

A straightforward extension of Team-Draft Interleaving introduced by Schuth

et al. (2014).

Same idea as Team-Draft interleaving:

• Let every ranker add a document in random order.

• Remember what ranker added which document.

• Rankers with more clicked documents are preferred over others.

When |R| = 2 it is reduced to Team-Draft interleaving.
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Team-Draft Multileaving: Method

In plain English:

1 Until k documents are placed:

2 1 Create a random permutation of R: R̂
2 For every ranker X in order of R̂
3 1 Let ranker X place its next unplaced document.

2 Remember that ranker X placed this document.

3 Present interleaving to user, observe clicks.

4 Ranker with the most clicks on its placed document wins.
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Visualized
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Team-Draft Multileaving: Properties

Properties of Team-Draft Multileaving:

• User experience:

• Not worse than the worst ranker in R.

• Correctness:

• Same problems as Team-Draft Interleaving.

• Correctness not guaranteed.
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Overview: Multileaving

User Experience Correctness Computable Source

Team-Draft X X (Schuth et al., 2014)
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Probabilistic Multileaving

Introduced by Schuth et al. (2015a),

at first glance, a straightforward extension of probabilistic interleaving.

Rankers are interpreted as distributions again:

PX(d) =

1
rank(d,RX)τ∑

d′∈D
1

rank(d′,RX)τ
(23)
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Probabilistic Multileaving: Method

1 Compute PX for every X ∈ R.

2 Repeat until k documents placed:

1 Randomly choose PX from X ∈ R.

2 Sample a document from d ∼ PX .

3 Place d without remembering which X was chosen.

4 Renormalize PX after removing d for every X ∈ R.

3 Display to user and observe clicks.

4 Calculate the expected outcome marginalizing over the possible placements.

5 Expected winners determine preferences.
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6
Document 1

Document 4

Ranker A Ranker B

Interleaving

Ranker Turn

Document 1

Document 4

Document 3

Document 5

Ranker C

C

165



Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Visualization
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Probabilistic Multileaving: Probabilities

For the interleaved list L, assignments T , and clicks c, the relevant probabilities can

now be calculated as:

P (Ti = A) =
1

|R|
(24)

P (Li = d|Ti = A) = PA(d) =

1
rank(d,RA)τ∑

d′∈D
1

rank(d′,RA)τ
(25)

P (Ti = A|Li = d) =
PA(d)∑

X∈R PX(d)
(26)
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Probabilistic Multileaving: Expected Outcome

Thus we can again compute the expected outcome O:

E[O(R, L, c)] =
∑
T

P (T |R, L)O(R, L, T, c) (27)

What may be a problem here?

The number of possible assignments is |R|c.
This is a problem for a large number of rankers or clicked documents.
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Probabilistic Multileaving: Expected Outcome Approximation

Luckily the expected outcome O can be approximated by sampling assignments.

Let T̂ be a set of assignments sampled from P (T |R, L):

T̂i ∼ P (T |R, L) (28)

The expected outcome can then be approximated by:

E[O(R, L, c)] ≈
∑
T ′∈T̂

O(R, L, T ′, c) (29)
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Probabilistic Multileaving: Properties

Properties of Probabilistic Multileaving:

• Correctness:

• Method has provable fidelity.

• In expectation method the preference of every ranker pair will be correct.

• User Experience:

• Every ranking possible.

• Hard to say what happens when R is large.

• Computational Costs:

• Becomes quite high for many clicks and rankers in R.

• Sampling assignments can be very expensive.
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Overview: Multileaving

User Experience Correctness Computable Source

Team-Draft X X (Schuth et al., 2014)

Probabilistic X X (Schuth et al., 2015a)
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Optimized Multileaving

Introduced by Schuth et al. (2014), straightforward extension of optimized interleaving.

Again different scoring functions can be chosen which create an optimization problem

of a distribution over the allowed interleavings.
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Optimized Interleaving: Scoring Function Example

Given three rankers where RA = [1, 2, 3, 4], RB = [2, 4, 3, 1] and RC = [3, 2, 4, 1] the

allowed interleavings are:

[1, 2, 3, 4] [1, 2, 4, 3]

[1, 3, 2, 4] [2, 1, 3, 4]

[2, 1, 4, 3] [2, 3, 1, 4]

[2, 3, 4, 1] [2, 4, 1, 3]

[2, 4, 3, 1] [3, 1, 2, 4]

[3, 2, 1, 4] [3, 2, 4, 1]
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Optimized Multileaving: Optimization

If we take pL for the probability of interleaving L being displayed, then the expected

outcome can be written as:

E[O] =
∑
X∈R

∑
Y ∈R

∑
L∈L

(
pL

|L|∑
i=1

P (click(i))s(Li, RX , RY )

)
= 0 (30)

The complexity of this problem is multiplied by the number of pairs in R i.e.

becomes quadratically more complex with |R|.
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Optimized Multileaving: Properties

Properties of Optimized Multileaving:

• User Experience:

• Strongest of the multileaving method.

• Only displays top documents.

• Correctness:

• Method can be optimized for fidelity.

• Also possible to optimize for other definitions of correctness.

• Linear optimization not guaranteed to be solvable, thus correctness not

guaranteed in all cases.

• Computational Costs:

• For many rankers in R, the linear optimization problem can become

unmanageable.
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Overview: Multileaving

User Experience Correctness Computable Source

Team-Draft X X (Schuth et al., 2014)

Probabilistic X X (Schuth et al., 2015a)

Optimized X X ? (Schuth et al., 2014)

181



Pairwise Preference Multileaving



Pairwise Preference Multileaving

Method designed specifically for multileaving,

introduced recently by Oosterhuis and de Rijke (2017).

Based on inferring preferences between rankers from preferences between document

pairs.
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Pairwise Preference Multileaving: Document Preferences

Users tend to start at the top of the result list and work their way down.

If a document is clicked but a previous document is not,

we can infer that the user has a preference between the two.

This assumption is well-established (Joachims, 2002b),

and famously used for pairwise learning to rank by Joachims (2002a).
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Pairwise Preference Multileaving: Document Preferences Visualization

A clicked document is inferred to be preferred over the previous unclicked

documents and the first unclicked document.

Document 1

Document 2

Document 3

Document 4

Document 5
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Pairwise Preference Multileaving: List Construction

Pairwise Preference Multileaving never places a document higher than any ranker in

R.

At every rank there is a set of ‘safe’ documents:

Ω(i,R, D) = {d|d ∈ D ∧ ∃X ∈ R, rank(d,RX) ≤ i} (31)

Pairwise Preference Multileaving simply samples from this set at every rank

(with the previously placed documents removed).
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Pairwise Preference Multileaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6

Ranker A Ranker B

Document 1

Document 2

Document 4

Document 5

Ranker C Document Pool Interleaving
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Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Visualization

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6

Ranker A Ranker B

Document 1

Document 2

Document 4

Document 5

Ranker C

Document 1

Document 2

Document 5

Document Pool

Document 2

Document 1

Interleaving

191



Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Visualization
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Pairwise Preference Multileaving: Inference

Given inferred document pair preferences, we want to give credit to rankers that

agree:

Document 1

Document 2

Document 3

Document 4

Document 2

Document 5

Document 1

Document 6

Ranker A Ranker B

Document 1

Document 2

Document 4

Document 5

Ranker C

Document 2

Document 1

Document 3

Document 5

Interleaving

Document 
Preferences:
doc. 1 > doc. 2
doc. 1 > doc. 5
doc. 3 > doc. 2
doc. 3 > doc. 5

correct
correct

incorrect
correct

incorrect
incorrect
incorrect
incorrect

correct
correct

incorrect
incorrect

What may be a problem with this approach?
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Pairwise Preference Multileaving: Symmetry

Some documents cannot appear in certain places,

thus some preferences will be more likely to be observed.

Document 1
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Document 5

Possible Impossible

Solution: only give credit if the same ranking with the documents flipped is possible.
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Pairwise Preference Multileaving: Pair bias

Some pairs are more likely to appear where they are scored.

Solution: inversely weigh credit to the probability of both documents appearing in

the pool together:

φ(di, dj ,L,R) =

0, ranking with flipped pair is impossible

1
P (di and dj appear in pool together) , otherwise

(32)
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Pairwise Preference Multileaving: Fidelity

Fidelity of Pairwise Preference Multileaving can be proven, the general outline is:

• Document pairs with equal click likelihood do not affect the expected
preferences:

• Under random clicks no preferences are found.

• Under correlated clicks, pairs with the same relevance have no effect.

• Under correlated clicks, only pairs with relevance differences give credit in
expectation:
• Rankers that rank a relevant document at the highest rank:

• Receive equal credit than rankers that rank the document the same.

• Receive more credit than rankers that rank the document lower.

• A Pareto dominating ranker ranks all documents at the highest rank,
and at least one higher than every other ranker.

• Thus the dominating ranker in R will receive the most credit.
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Pairwise Preference Multileaving: Properties

Properties of Pairwise Preference Multileaving:

• User experience:

• Never places a document higher than any ranker would.

• Correctness:

• Has proven Fidelity.

• A Pareto dominating ranker in R wins in expectation.

• Computational complexity:

• Very fast method, polynomial complexity.
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Overview: Multileaving Simulations

Results from simulations with 15 rankers, user behaviour simulated by simple click

models, Ebin is the ratio of errors in preferences between ranker pairs (Oosterhuis

and de Rijke, 2017).
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Overview: Multileaving

User

Experience
Correctness Computable Source

Team-Draft X X (Schuth et al., 2014)

Probabilistic X X (Schuth et al., 2015a)

Optimized X X ? (Schuth et al., 2014)

Pairwise-

Preference
X X X (Oosterhuis and de Rijke, 2017)
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Future of Online Evaluation



Future directions

Interleaving and Multileaving provide many ways to reliably compare ranking systems,

however, there is still room for improvement:

Continuing on previous work:

• The guaranteed user experience of multileaving with fidelity can be better.

• No multileaving method that guarantees:

1 a good user experience

2 finds all preferences in expectation.
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Future directions: Other Interesting Directions

Other interesting directions that could be further looked into:

• Go beyond clicks:

• learn from other aspects of clicks (reaction time, dwell time, etc),

how indicative a click is of a true preference.

• See (Kharitonov et al., 2013; Yue et al., 2010).

• Further than the ten blue links:

• For instance, how do we apply interleaving to grid-based displays, e.g. image search?

• See (Kharitonov et al., 2015).
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Future directions: Far Future

As we are able to interact with search systems in more ways,

user behaviour will become more complex

and better evaluation will be necessary.

As we get better at modelling users and proving properties of algorithms,

better evaluation will be possible.
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Conclusion



Conclusion

Covered in the first part:

• Don’t trust human annotators, trust user interactions.

• Online approaches can effectively and reliably make comparisons:

• Be careful with noise and bias in user interactions.

• Algorithms should not interfere with user behaviour.

• Rankers should be compared fairly: unbiased and correctly.

What’s next:

• Can we use the online approach to optimize ranking systems?
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Introduction: Ranking Systems



Ranking Systems

Let’s go back to the beginning:

• Ranking systems are vital for making the internet accessible.

• They can present users a small comprehensible selection out of millions of

unordered results.

• Search and recommendation are practically everywhere.
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Ranking Systems: Schematic Example

Collection of objects.

User with a search task.

Ranking 
System

1 2 3 4 5 6 7 8 9 10

Ranking of objects.
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Ranking Systems: Examples
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Ranking Systems: Examples
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Ranking Systems: Examples
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Ranking Systems: Schematic Example Naming

Collection of documents.

User’s search query.

Ranking 
System

1 2 3 4 5 6 7 8 9 10

Ranking of documents.
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Importance of Ranking Quality

The quality of a ranking system is very important as it directly impacts the user

experience.

Previously discussed:

• Reliable evaluation is important for improving a ranking system.

In this lecture:

• Algorithms that automatically optimize ranking systems, i.e. learning to rank.
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Relevance Signals for Ranking



Relevance Signals: Introduction

The big question of information retrieval:

Is document d relevant for query q?

In other words, a function is desired that can predict relevancy given d and q:

f(q, d) = relevancy of document d w.r.t. query q (1)

The oldest and simplest functions that approximate this are relevance signals:

Do you know any relevance signals?
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Relevance Signals: Binary Matching

Simplest signal possible:

Does the query q appear in document d?

For a single word:

b(w, d) =

1, w ∈ d

0, w 6∈ d
, (2)

then for multiple words:

f(q, d) =
1

|q|
∑
w∈q

b(w, q). (3)

What may be problematic with this signal?
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Relevance Signals: TF-IDF

Term Frequency-Inverse Document Frequency (TF-IDF) deals with document

length, and the rarity of words in the document collection D:

How frequent is q in d and how frequent is q in D?
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Relevance Signals: TF-IDF

The frequency of a word in a document, term frequency:

TF (w, d) =
number of occurrences of w in document d

|d|
, (4)

the frequency of a word in the document collection, document frequency:

DF (w,D) =
number of documents in D where w ∈ d

|D|
, (5)

then TD-IDF:

TF -IDF (q, d) =
1

|q|
∑
w∈q

TF (w, d)

DF (w,D)
. (6)
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Relevance Signals: BM25

Okapi BM25 (Best-Matching) is another very famous relevance signal:

f(q, d) =
∑
w∈q

DF (w,D)−1
TF (w, d)(k1 + 1)

TF (w, d) + k1(1− b+ b×|D|
average document length)

(7)

Much more complicated, we will not get into the details now.
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Relevance Signals: Other

Common relevance signals (applicable to different doc. parts, i.e. body, head, url):

1 Binary Matching

2 TF-IDF

3 BM25

4 Language Models

5 Neural Models

Other useful signals:

1 Spam-detection

2 Page-Rank

3 Document quality/popularity

What is the signal we should use?
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Relevance Signals: Conclusion

There is no relevance signal to rule them all.

For reference, the number of features in industry datasets:

Dataset Feature Count Reference

Microsoft Learning to Rank Web 30k 136 (Qin and Liu, 2013)

Yahoo! Webscope 471 (Chapelle and Chang, 2011)

Istella 220 (Dato et al., 2016)

What should we do with these signals then?

Combine all signals into a single model.
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Relevance Signals: Combining All Signals

A document representation out of signals:

d = φ(d, q) = [BM(d, q),TF-IDF(d, q),BM25(d, q),Page-Rank(d),Spam(d), . . .] (8)

Then, for instance, a linear model can combine all signals:

f(d,θ) =

|d|∑
i=1

θidi. (9)

How do we find θ?

Using machine learning.
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Traditional Learning to Rank: Pointwise

Pointwise approaches optimize models f(d,θ) to predict the relevancy of a

document, (Liu et al., 2009).

This can be cast as a classification or regression problem, e.g. the regression loss is:

L =
∑
d

(f(d,θ)− relevancy(d, q))2 (10)

However, the model f(d,θ) will be used for ranking, and the pointwise method does

not make use of that application.
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Traditional Learning to Rank: Pairwise

Pairwise approaches optimize models f(d,θ) to predict the order of a document

pairs, (Joachims, 2002).

A possible pairwise loss could be:

L =
∑
d�d′

f(d′,θ)− f(d,θ) (11)

However, users will probably only look at the top documents, not all document pairs.
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Traditional Learning to Rank: Listwise

Listwise approaches optimize models f(d,θ) to directly maximize ranking metrics.

A possible listwise loss could look like:

L = −NDCG(f(·,θ)) (12)

Unfortunately, most IR metrics are non-differentiable but this can be solved by

heuristic approaches, e.g. Lambda-MART, (Burges, 2010).
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Traditional Learning to Rank: Overview

Three categories of learning to rank methods:

• Pointwise: Optimize model to directly predict relevancy of documents.

• Pairwise: Optimize model to predict the order of document pairs correctly.

• Listwise: Optimize model to (heuristically) increase ranking metric.

What is the large weak point of all of these methods?

They require annotated data.
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Problems with Offline Learning to Rank

Similar to offline evaluation, offline learning to rank requires:

• A set of queries.

• A collection of documents.

• Annotations indicating the relevance between query and document pairs,

or similar annotations that provide us the best rankings.

The problems with annotated datasets, discussed in the previous part, are still true.
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Problems with Offline Evaluation

Some of the most substantial limitations of annotated datasets are:

• time consuming and expensive to make (Qin and Liu, 2013; Chapelle and

Chang, 2011).

• unethical to create in privacy-sensitive settings (Wang et al., 2016).

• impossible for small scale problems e.g. personalization.

• stationary, cannot account for future changes in relevancy (Lefortier et al.,

2014).

• not necessarily aligned with actual user preferences (Sanderson, 2010),

i.e. annotators and users often disagree.
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Learning from User Interactions

Online evaluation can reliably infer ranker preferences from user interactions,

thus probably learning to rank from user interactions is also a good idea.

Remember:

• Users hate giving direct feedback.

• Implicit feedback from users indicates their preferences.

• Learning from users solves the problems with annotated datasets.

22



Learning from User Interactions: Difficulties

Learning from user interactions brings its own difficulties:

• Noise: Users click on things for unexpected reasons.

• Bias: Interactions are affected by factors other than relevancy:

• Position bias: Higher ranked documents get more attention.

• Selection bias: Interactions are limited to the presented documents.
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Learning from User Interactions: Golden Triangle

Source: http://www.mediative.com/
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Learning from User Interactions: Conclusion

Learning to rank from user interactions has large potential:

• Learning from users solves the problems with human annotators.

Learning to rank from user interactions has to deal with:

• Noise in user behaviour.

• Position Bias: Higher ranked documents get more clicks.

• Selection Bias: Users will only consider displayed documents.
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Related Approaches: Learning from Click-Logs

The first paper on learning from user interactions (Joachims, 2002), also introduced

the pairwise learning approach.

Infer pairwise preferences between documents from clicks in historical interaction

logs and optimize a model to predict them correctly.

Though very effective this work does not deal with selection bias, and only

minimally with position bias.
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Related Approaches: Counter-Factual Learning to Rank

Recently a counter-factual approach was introduced by Joachims et al. (2017).

Extends a pointwise learning to rank approach to take into account position bias.

Method assumes the position bias is known or learned and independent from

displayed documents.

There is very recent work into estimating the position bias from interaction data

Ai et al. (2018), still a very active and upcoming area of research.

Similarly user modelling have been shown effective for dealing with biases for

learning to rank by Wang et al. (2018b).
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Online Learning to Rank: Concept

Online Learning to Rank methods have control over what to display to the user.

Simultantiously they:

• Decide what results to display to the user.

• Learn from user interactions with chosen results.

These methods can be much more efficient,

because they have (more) control over what data is gathered.
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Online Learning to Rank: Visualization

Query

Ranking 
System

User

Document

Document

Document

Document

Displayed Results

Online Learning to Rank
Algorithm

Seeing/Interacting

Intervening/Learning

Updating
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Online Learning to Rank: Advantages

Online learning to rank methods have the potential advantages:

• Learn the true preferences of users (unlike annotator approaches).

• More responsive by immediately adapting to users.

What is a large risk for online learning to rank methods?

• Unreliable methods could severely worsen the user experience immediately.
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Online Learning to Rank: Example

Document #1
https://www.document1.com
Snippet from first document.

user issued query

Document #2
https://www.document2.com
Snippet from second document.

Document #3
https://www.document3.com
Snippet from third document.
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Online Learning to Rank: Example

Document #3
https://www.document3.com
Snippet from third document.

user issued query

Document #1
https://www.document2.com
Snippet from second document.

Document #2
https://www.document1.com
Snippet from first document.

35



Online Learning to Rank: Example

Khan Academy | Free Online Courses, Lessons & Practice
https://www.khanacademy.org/
You can learn anything. Expert-created content and resources for every 
course and level. Always free.

online learning

50 Top Online Learning Sites - Best College Reviews
https://www.bestcollegereviews.org/50-top-online-learning-sites/
Online learning may not appeal to everyone; however, the sheer number of 
online learning sites suggests that there is at least a strong interest in 
convenient, ...

The 5 Most Shocking Things I Learned About Amsterdam Online
https://www.clickbait.com
A juicy shocking list of five things that are probably not true with a title that will get a 
lot of attention. You will regret wasting your time on this.
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Online Learning to Rank: Example
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Online Learning to Rank: Example

The 5 Most Shocking Things I Learned About Amsterdam Online
https://www.clickbait.com
A juicy shocking list of five things that are probably not true with a title that will get a 
lot of attention. You will regret wasting your time on this.

online learning

Unbelievable Things We Learned About Online Shopping
https://www.moreclickbait.com
More things that are not researched and just to get your attention quickly.

Three Things Strangers Can Learn From Your Online Profile
https://www.evenmoreclickbait.com
Scaremongering for clicks, websites without any dignity exist.
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Online Learning to Rank: Self-Confirming Loop

What happened here?

• A click on an irrelevant document happened for a random reason.

• The algorithm assumed the document is relevant,

and changes the ranking model to place it on top.

• Now documents similar to the clicked irrelevant document are ranked on top.

• Most likely the next clicked document will also be irrelevant.

We’ve entered a self-confirming loop:

• Due to noise and bias, a document was incorrectly inferred relevant.

• Due to bias, this inference is most likely to occur again.

• The algorithm’s confidence in this incorrect inference continues to increase.

This behaviour is one of the biggest dangers in online learning.
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Dueling Bandit Gradient Descent: Introduction

Introduced by Yue and Joachims (2009) as the first online learning to rank method.

Intuition:

• if online evaluation can tell us if a ranker is better than another,

then we can use it to find an improvement of our system.

By sampling model variants and comparing them with interleaving,

the gradient of a model w.r.t. user satisfaction can be estimated.
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Dueling Bandit Gradient Descent: Method

Start with the current ranking model parameters: θb.

Then indefinitely:

1 Wait for a user query.

2 Sample a random direction from the unit sphere: u, (thus |u| = 1).

3 Compute the candidate ranking model θc = θb + u, (thus |θb − θc| = 1).

4 Get the rankings of θb and θc.

5 Compare θb and θc using interleaving.

6 If θc wins the comparison:

• Update the current model: θb ← θb + η(θc − θb)
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Dueling Bandit Gradient Descent: Visualization
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Dueling Bandit Gradient Descent: Visualization
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Dueling Bandit Gradient Descent: Properties

Yue and Joachims (2009) prove that under the assumptions:

• There is a single optimal set of parameters: θ∗.

• The utility space w.r.t. θ is smooth,

i.e. small changes in θ lead to small changes in user experience.

Then Dueling Bandit Gradient Descent is guaranteed to have a sublinear regret:

• The algorithm will eventually approximate the ideal model.

• The duration of time is effected by the number of parameters of the model, the

smoothness of the space, the unit chosen, etc.
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Dueling Bandit Gradient Descent: Visualization

Simulations based on offline datasets: user behaviour is based on the annotations.

As a result, we can measure how close the model is getting to their satisfaction.
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a perfect user (left) and an informational user (right).
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The Contextual Bandit Problem,

and Online Learning to Rank



Online Learning to Rank, and the Contextual Bandit Problem

Online Learning to Rank is related to Reinforcement Learning (Sutton and Barto,

1998) and the Contextual Bandit Problem (Langford and Zhang, 2008).

Roughly speaking in a contextual bandit problem:

1 The agent receives contextual information.

2 The agent chooses an action out of a set of available actions.

3 The action is performed.

4 A reward for the performed action is observed.
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Differences between CBP and OLTR

In a contextual bandit problem:

1 The agent receives contextual information.

2 The agent chooses an action out of a set of available actions.

3 The action is performed.

4 A reward for the performed action is observed.

In online learning to rank:

1 The system receives a query from the user.

2 The system constructs a ranking out of the set of available documents.

3 The ranking is displayed to the user.

4 User interactions with the ranking are observed.

56



Differences between CBP and OLTR

Why don’t we use contextual bandit algorithms (CBP) for the online learning to

rank (OLTR) problem?

• In OLTR rewards are not observed directly.

• A reward can be inferred from interactions,

e.g. the number of clicks is the reward.

• This is very unsafe, you risk optimizing the wrong objective.

• In OLTR the action space is immense: all possible rankings,

CBP algorithms don’t work well with large action spaces.
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Lessons from CBP for OLTR

The exploitation/exploration tradeoff is well studied in CBP and RL,

Hofmann et al. (2013b) showed that (unsurprisingly) it is also important in OLTR.

The two sides of the tradeoff:

• Exploitation: Performing the action that we currently think is best,

• we expect this action to lead to the most immediate reward!

• but we risk that there is a better action we don’t know about yet.

• Exploration: Trying an action that we don’t think is the best,

• we expect this leads to immediate suboptimal reward!

• but we may find an action is better than we thought.

A mix of exploitation and exploration leads to the best long-term performance.
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Reusing Historical Interactions



Reusing Historical Interactions

Hofmann et al. (2013a) introduced the idea of guiding exploration by reusing

previous interactions.

Dueling Bandit Gradient Descent tries out a different potential gradient direction at

each step.

Intuition: if previous interactions showed that a direction is unfruitful then we

should avoid it in the future.
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Candidate Pre-Selection

Remember the last n interactions in h.

1 Sample m pre-candidates: e← {θc1, . . . , θcm}
2 Repeat until |e| = 1:

1 Sample two candidates from e: θcl , θcr
2 Sample a historical user interaction event from h: h′

3 Compare candidates using estimating probabilistic interleaving results:

if o(θcl , θ
c
r, h

′) > 0

• remove θcr from e.

else if o(θcl , θ
c
r, h

′) < 0

• remove θcl from e.

else

• Sample θcx from {θcl , θcr}.
• Remove θcx from e.

3 The last remaining candidate from e is pre-selected for DBGD.
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Candidate Pre-Selection: Visualization
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Candidate Pre-Selection: Visualization
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Reusing Historical Interactions: Performance

Simulated results on the NP2003 dataset, graph from (Hofmann et al., 2013a).
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Reusing Historical Interactions: Caveat

Candidate pre-selection achieves a faster learning rate by guiding exploration:

discarding unpromising candidate rankers.

What is a potential danger with this approach?

Remember:

• Exploration is used to discover actions that perform better than expected,

this ultimately leads to the best long-term performance.

• Candidate Pre-Selection uses expectations from history to exclude

candidate rankers from being explored.

• This is dangerously close to a self-confirming loop.
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Reusing Historical Interactions: Long Term Performance

0 2000 4000 6000 8000 10000
impressions

0.55
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P-MGD-99c

Simulated results on the NP2003 dataset, graph from (Oosterhuis et al., 2016).

Remember, in the online setting the performance cannot be measured,

thus early-stopping is impossible.
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Reusing Historical Interactions: Other Work

Besides Hofmann et al. (2013a) other work has also tried reusing historical

interactions for online learning to rank: (Zhao and King, 2016; Wang et al., 2018a).

The problem with these works is that:

• they don’t consider the long-term convergence.

• they were not evaluated on the largest available industry datasets.

As a result, it is still unclear whether we can reliably reuse historical interactions

during online learning.
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Multileave Gradient Descent

The introduction of multileaving in online evaluation allowed for multiple rankers

being compared simultaneously from a single interaction.

A natural extension of Dueling Bandit Gradient Descent is to combine it with

multileaving, resulting in Multileave Gradient Descent (Schuth et al., 2016).

Multileaving allows comparisons with multiple candidate rankers,

increasing the chance of finding an improvement.
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Multileave Gradient Descent: Method

Start with the current ranking model parameters: θb.

Then indefinitely:

1 Start with an empty candidate set: ζ ← {}.
2 Then for n candidates:

1 Sample a random direction from the unit sphere: u, (thus |u| = 1).

2 Compute the candidate ranking model θc = θb + u, (thus |θb − θc| = 1).

3 Add candidate θc to set: ζ ← ζ ∪ {θc}.

3 Compare θb and ζ using multileaving to get the preferences: P.

4 Determine the winning set: ω ← {θc|θc ∈ P ∧ θc >P θb}
5 Update current model θb ← θb +

1
|ω|

∑
θc∈ω(θc − θb)
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Multileave Gradient Descent: Visualization
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Multileave Gradient Descent: Visualization
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Multileave Gradient Descent: Visualization
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Multileave Gradient Descent: Visualization
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Multileave Gradient Descent: Results

Results on the MSRL10k dataset under simulated users:
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Multileave Gradient Descent: Conclusion

Properties of Multileave Gradient Descent:

• Vastly speeds up the learning rate of Dueling Bandit Gradient Descent.

• Much better user experience.

• Instead of limiting (guiding) exploration, it is done more efficiently.

• Huge computational costs, large number of rankers have to be applied.
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Speed-Quality Tradeoff

So far we’ve only discussed different algorithms for online learning to rank.

We’ve not talked about different ranking models.

The first eights years of work in the field have only considered linear models,

this is not a coincidence.
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Ranking Models in Online Learning to Rank Research

Recognized by Oosterhuis and de Rijke (2017a) is the Speed-Quality tradeoff, that is

unique to online learning.

We know from machine learning:

• Complex models, e.g. deep learning, are more expressive, i.e. fit more patterns,

however, they also require more data to train.

• Simpler models, e.g. linear models, are less expressive, i.e. underfit some

patterns, however, they require much less data to train.
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Speed-Quality Tradeoff

For online learning to rank:

• More data means more user interactions.

Thus the choice of model balances the short-term (speed) and long-term (quality)

performance:

• Complex models have better convergence (long-term performance),

but need more user interactions to reach decent quality (short-term

performance).

• Simpler models can learn very fast (short-term performance),

but will converge on suboptimal quality (long-term performance).
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Speed-Quality Tradeoff

Results for a linear model (MGD) and a simpler model with reduced dimensionality

(Sim-MGD):
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impressions

0.67
0.68
0.69
0.70
0.71
0.72

ND
CG

informational

MGD
Sim-MGD

Source: (Oosterhuis and de Rijke, 2017a)
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Cascading Multiple Models

Introducing a new model can thus never both:

• Improve final convergence.

• Improve user experience during optimization.

Explaining the lack of work into models for online learning to rank.

As a solution Oosterhuis and de Rijke (2017a) optimize a cascade of models:

• Optimize a simple model until convergence.

• Continue with complexer model.
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Cascading Multiple Models: Results

Results for a linear model (MGD) and a simpler model with reduced

dimensionality (Sim-MGD) and a cascade of the two models (C-MGD):
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Problems with Dueling Bandit Gradient Descent

A problem with Dueling Bandit Gradient Descent and all its extensions:

• Their performance at convergence is much worse than offline approaches,

even under ideal user interactions.

How is this possible, if it’s guaranteed to find the optimal model in sublinear time?
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Problems with the Dueling Bandit Gradient Descent Bounds

Remember the regret of Dueling Bandit Gradient Descent made two assumptions:

• There is a single optimal model: θ∗.

• The utility space is smooth w.r.t. to the model weights θ.

These assumptions don’t hold for models that can be scaled:

∀θ, ∀α, ∃θ′, α > 0→ f(d, θ) = αf(d, θ′). (13)

For instance, multiplying the weights of a linear model with any positive scalar results

in the same rankings.

This is true for linear models, deep models, regression trees, etc.

for all these models the assumptions do not hold, therefore neither does the proof.
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Problems with the Dueling Bandit Gradient Descent

Upon closer inspection Dueling Bandit Gradient Descent looks more like an

evolutionary algorithm than stochastic gradient descent.
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Pairwise Differentiable Gradient

Descent



Pairwise Differentiable Gradient Descent

Dueling Bandit Gradient Descent and all its extensions are based on online

evaluation methods.

(This is all existing work in Online Learning to Rank up to 2018.)

In the upcoming CIKM’18 conference we will present a novel online learning to rank

algorithm (Oosterhuis and de Rijke, 2018b).

Intuition: A pairwise method can be made unbiased, while being differentiable,

without relying on online evaluation method or the sampling of models.
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Plackett Luce Model

Pairwise Differentiable Gradient Descent optimizes a Plackett Luce ranking

model, this models a probabilistic distribution over documents:

P (d|D, θ) = expf(d,θ)∑
d′∈D expf(d′,θ)

(14)
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Pairwise Preference Inference

Similar to existing pairwise methods (Oosterhuis and de Rijke, 2017b; Joachims,

2002), Pairwise Differentiable Gradient Descent infers document preferences from

user clicks:

Document 1

Document 2

Document 3

Document 4

Document 5
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Biased Pairwise Update

The probability that a document pair di, dj is sampled according to the inferred

preference di >c dj is increased:

P (di � dj |D, θ) =
P (di|D, θ)

P (di|D, θ) + P (dj |D, θ)
=

expf(di,θ)

expf(di,θ)+expf(dj,θ)
(15)

With >c indicating inferred document preference, this gives the (estimated) gradient:

∑
di>cdj

∇P (di � dj |D, θ) =
∑
di>cdj

expf(di,θ) expf(dj,θ)

(expf(di,θ)+expf(dj,θ))2
(f ′(di, θ)− f ′(dj, θ))

(16)

What may be a problem with this approach?
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Bias in Pairwise Inference

The pairwise preference approach is biased, some preferences are more likely to be

found that others.

Document 1

Document 2

Document 3

Document 4

Document 5

How do we solve this problem?
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Reverse Pair Rankings

Assumption:

• if di and dj are equally relevant then

finding di >c dj is equally likely as finding dj >c di,

after the documents are swapped in a ranking.

document 1

document 2

document 3

document 4

document 5

document 3

document 2

document 1

document 4

document 5

We call the ranking with the swapped pair the reversed pair ranking: R∗(R, di, dj).
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Unbiasing the Pairwise Update

The ratio between the probability of the ranking and the reversed ranking indicates the

bias between the two directions:

ρ(di, dj , R) =
P (R∗(di, dj , R)|f,D)

P (R|, f,D) + P (R∗(di, dj , R)|f,D)
(17)

Pairwise Differentiable Gradient Descent uses this ratio to unbias the gradient

estimation:

∇f(·, θ) ≈
∑
di>cdj

ρ(di, dj , R)
expf(di,θ) expf(dj,θ)

(expf(di,θ)+expf(dj,θ))2
(f ′(di, θ)− f ′(dj, θ)) (18)
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Unbiasedness of Pairwise Differentiable Gradient Descent

Under the reversed pair ranking assumption, it is proven that the expected

estimated gradient can be written as:

E[∇f(·, θ)] =
∑
di,dj

αij(f
′(di, θ)− f ′(dj, θ)). (19)

Furthermore, the weights αij will match the user preferences in expectation:

di =rel dj ⇔ αij = 0 (20)

di >rel dj ⇔ αij > 0 (21)

di <rel dj ⇔ αij < 0 (22)

Thus the estimated gradient is unbiased w.r.t. document pair preferences.

However, we don’t know what the norms of the weights α should be.
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Pairwise Differentiable Gradient Descent: Method

Start with initial model θt.

Then indefinitely:

1 Sample (without replacement) a ranking R from the document distribution:

P (d|D, θt) =
expf(d,θt)∑

d′∈D expf(d′,θt)
. (23)

2 Display the ranking R to the user.

3 Infer document preferences from the user clicks c.

4 Update model according to the estimated (unbiased) gradient:

∇f(·, θ) ≈
∑
di>cdj

ρ(di, dj , R)∇P (di � dj |D, θ). (24)
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Pairwise Differentiable Gradient Descent: Visualization
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Pairwise Differentiable Gradient Descent: Visualization
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Pairwise Differentiable Gradient Descent: Visualization
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Pairwise Differentiable Gradient Descent: Results Short Term

Simulated results on the MSRL-WEB10k dataset:
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Pairwise Differentiable Gradient Descent: Results Long Term

Simulated results on the MSRL-WEB10k dataset:

0 200000 400000 600000 800000 1000000
impressions

0.20

0.25

0.30

0.35

0.40

0.45

0.50

ND
CG

perfect

DBGD
DBGD (neural)
PDGD
PDGD (neural)

0 200000 400000 600000 800000 1000000
impressions

0.20

0.25

0.30

0.35

0.40

0.45

0.50

ND
CG

informational

118



Pairwise Differentiable Gradient Descent: Conclusion

With the introduction of Pairwise Differentiable Gradient Descent we have:

• the first online method to convergence near offline levels of performance.

• considerably faster learning (user experience) than before.

• performance of an non-linear model to exceed linear model.

• computationally much more efficient than most previous methods.

• currently no proven regret bounds.

So what’s left for online learning to rank?
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Future Directions for Online Learning to Rank

Now that performance is on the level of offline learning to rank:

• The time is ripe for real-world experiments.

• How much does online learning to rank improve over offline/historical

approaches?

• How effective is it for personalization?
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Future Directions for Online Learning to Rank

Other areas to expand to:

• Beyond clicks:

• Can we learn from dwell time, conversion, purchases, watch-time, etc.

• Beyond ten blue links:

• Do methods still work in non-vertical displays? (Oosterhuis and de Rijke, 2018a).

• Beyond relevance:

• Can we optimize for aspects beside relevance: e.g. result diversity?

• Responsible A.I.:

• Can our algorithms guarantee to respect users during exploration?

• Can they explain and explicitly substantiate their learned behaviour?
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Conclusion

Covered in the second part:

• Learn from user interactions, not from human annotators.

• The true preferences of users can be learned from their behaviour.

• Be careful with noise and bias, avoid the self-confirming loop.

• Online Learning to Rank methods can rank and learn simultaneously.

• Interventions allow for very fast and efficient learning.

• Fast learning enables responsive behaviour which leads to great user experience.

• Recent advances show there is much more potential in online learning to rank.

• Only just been able to reach the level of offline performance.

• Many different models, settings, and extensions possible.

• Continue our work: https://github.com/HarrieO/OnlineLearningToRank.
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