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Online Learning to Rank

Online Learning to Rank: learn by interacting with users.

Solves most of the problems of expert-annotations:

e Interactions are virtually free if you have users.

e User behaviour gives implicit feedback.

These methods have to handle:

e Noise: Users click for unexpected reasons.

e Biases: Interactions are affected by position and selection bias.
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Dueling Bandit Gradient Descent: Visualization
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Dueling Bandit Gradient Descent: Visualization

Learning

Seeing/Interacting
User

Displayed Results

I Document

Weight #1

Ranking A Ranking B

Document

D D

Document

D D

4

o

D

Interleaving

o

D

YY)
e S SR G|

)
| I
]
1

Weight #2



Dueling Bandit Gradient Descent

Basis of the online LTR field, virtually everything is an extension of DBGD:
(Yue and Joachims, 2009; Schuth et al., 2016; Hofmann et al., 2013; Zhao and King,
2016; Wang et al., 2018).
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Pairwise Differentiable Gradient Descent: Visualization
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Limitations of Previous Existing Results

Comparison based on previous work (Oosterhuis and de Rijke, 2018):

e Pairwise Differentiable Gradient Descent outperforms DBGD.

e Dueling Bandit Gradient Descent has proven sublinear regret bounds.

Problems with the current state of affairs:

e Past comparisons are based on low-noise, cascading click models,
Pairwise Differentiable Gradient Descent assumes cascading behaviour!

e There is a conflict between the proven regret bounds of Dueling Bandit
Gradient Descent and its observed performance.



Our contribution

First, we critically look at the regret bounds of Dueling Bandit Gradient Descent:

e We prove that its assumptions cannot be true for standard ranking models.

Then we reproduce the comparison under different conditions using simulation:

e Both cascading and non-cascading click behaviour.
e Simulated conditions ranging from ideal to extremely difficult:

e ideal: no noise, no position bias,
e near-random: mostly noise, very high position bias.
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Comparison: Dueling Bandit Gradient Descent
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Results from simulations on the MSLR-WEB10k dataset.



Comparison: Pairwise Differentiable Gradient Descent
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Comparison: Complete
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Conclusion




Conclusion

In this reproducibility paper we have:

e shown that an existing proof for regret bounds is unsound.

e Reproduced a comparison between Pairwise Differentiable Gradient Descent
and Dueling Bandit Gradient Descent, and generalized their conclusions from
ideal circumstances to extremely difficult circumstances.

e Shown that under all experimental conditions we could simulate, Pairwise
Differentiable Gradient Descent outperforms previous methods by large margins.

Please continue our work: https://github.com/Harrie0/0OnlinelearningToRank
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https://github.com/HarrieO/OnlineLearningToRank
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