Optimizing Ranking Models in an Online Setting

based on a publication at ECIR 2019

Harrie Oosterhuis and Maarten de Rijke

November 29, 2019

University of Amsterdam

oosterhuis@uva.nl, derijke@uva.nl

https://staff.fnwi.uva.nl/h.r.oosterhuis

Online Learning to Rank

Online Learning to Rank

Online Learning to Rank: **learn by interacting with users**.

Solves most of the problems of expert-annotations:

- Interactions are virtually free if you have users.
- User behaviour gives implicit feedback.

These methods have to handle:

- Noise: Users click for unexpected reasons.
- Biases: Interactions are affected by position and selection bias.

Dueling Bandit Gradient Descent

Dueling Bandit Gradient Descent

Basis of the online LTR field, virtually everything is an extension of DBGD: (Yue and Joachims, 2009; Schuth et al., 2016; Hofmann et al., 2013; Zhao and King, 2016; Wang et al., 2018).

Pairwise Differentiable Gradient

Descent

Document Collection

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document

Document Collection

Document

Document

Document

Limitations of Existing Results

Limitations of Previous Existing Results

Comparison based on previous work (Oosterhuis and de Rijke, 2018):

- Pairwise Differentiable Gradient Descent outperforms DBGD.
- Dueling Bandit Gradient Descent has proven sublinear regret bounds.

Problems with the current state of affairs:

- Past comparisons are based on low-noise, cascading click models,
 Pairwise Differentiable Gradient Descent assumes cascading behaviour!
- There is a conflict between the proven regret bounds of Dueling Bandit Gradient Descent and its observed performance.

Our contribution

First, we critically look at the regret bounds of Dueling Bandit Gradient Descent:

• We prove that its assumptions cannot be true for standard ranking models.

Then we reproduce the comparison under different conditions using simulation:

- Both cascading and non-cascading click behaviour.
- Simulated conditions ranging from ideal to extremely difficult:
 - ideal: no noise, no position bias,
 - near-random: mostly noise, very high position bias.

Experimental Results

Comparison: Dueling Bandit Gradient Descent

Results from simulations on the MSLR-WEB10k dataset.

Comparison: Pairwise Differentiable Gradient Descent

Results from simulations on the MSLR-WEB10k dataset.

Comparison: Complete

Results from simulations on the MSLR-WEB10k dataset.

Comparison: Complete

Results from simulations on the Yahoo Webscope dataset.

Comparison: Complete

Results from simulations on the Istella dataset.

Conclusion

Conclusion

In this reproducibility paper we have:

- shown that an existing proof for regret bounds is unsound.
- Reproduced a comparison between Pairwise Differentiable Gradient Descent and Dueling Bandit Gradient Descent, and generalized their conclusions from ideal circumstances to extremely difficult circumstances.
- Shown that under all experimental conditions we could simulate, Pairwise
 Differentiable Gradient Descent outperforms previous methods by large margins.

Please continue our work: https://github.com/HarrieO/OnlineLearningToRank

References i

- K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing historical interaction data for faster online learning to rank for ir. In *Proceedings of the sixth ACM international conference on Web search and data mining*, pages 183–192. ACM, 2013.
- H. Oosterhuis and M. de Rijke. Differentiable unbiased online learning to rank. In *Proceedings of the 27th ACM International Conference on Information and Knowledge Management*, pages 1293–1302. ACM, 2018.
- A. Schuth, H. Oosterhuis, S. Whiteson, and M. de Rijke. Multileave gradient descent for fast online learning to rank. In *Proceedings of the Ninth ACM International Conference on Web Search and Data Mining*, pages 457–466. ACM, 2016.
- H. Wang, R. Langley, S. Kim, E. McCord-Snook, and H. Wang. Efficient exploration of gradient space for online learning to rank. *arXiv* preprint *arXiv*:1805.07317, 2018.
- Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling bandits problem. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 1201–1208. ACM, 2009.

References ii

T. Zhao and I. King. Constructing reliable gradient exploration for online learning to rank. In *Proceedings of the 25th ACM International on Conference on Information and Knowledge Management*, pages 1643–1652. ACM, 2016.

Acknowledgments

All content represents the opinion of the author(s), which is not necessarily shared or endorsed by their employers and/or sponsors.