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Introduction



Learning to Rank in Information Retrieval

Learning to rank enables the optimization of ranking systems.

Traditionally learning to rank uses annotated datasets:

• Relevance annotations for query-document pairs provided by human judges.

There are problems with annotated datasets:

• expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).

• impossible to create (Wang et al., 2016).

• not necessarily aligned with actual user preferences (Sanderson, 2010),

i.e. annotators and users often disagree.
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Online Learning to Rank

Online learning to Rank: learn by interacting with users.

Solves most of the problems of annotations:

• Interactions are virtually free if you have users.

• User behaviour gives implicit feedback.

These methods have to handle:

• Noise: Users click for unexpected reasons.

• Biases: Interactions are affected by position and selection bias.
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Dueling Bandit Gradient Descent: Introduction

Introduced by Yue and Joachims (2009) as the first online learning to rank method.

Intuition:

• Interleaving can compare rankers from user interactions.

• By sampling model variants and comparing them with interleaving,

the gradient of a model w.r.t. user satisfaction can be estimated.
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Dueling Bandit Gradient Descent: Visualization

User

W
ei

gh
t #

1

Weight #2

4



Dueling Bandit Gradient Descent: Visualization

Query
User

W
ei

gh
t #

1

Weight #2

5



Dueling Bandit Gradient Descent: Visualization

Query
User

W
ei

gh
t #

1

Weight #2

6



Dueling Bandit Gradient Descent: Visualization

Query
User

W
ei

gh
t #

1

Weight #2

7



Dueling Bandit Gradient Descent: Visualization

Query

Document

Document

Document

Document

Ranking B

User

W
ei

gh
t #

1

Weight #2

Document

Document

Document

Document

Ranking A

8



Dueling Bandit Gradient Descent: Visualization

Query

Document

Document

Document

Document

Ranking B

User

W
ei

gh
t #

1

Weight #2

Document

Document

Document

Document

Ranking A

Document

Document

Document

Document

Displayed Results

Interleaving

9



Dueling Bandit Gradient Descent: Visualization

Query

Document

Document

Document

Document

Ranking B

User

W
ei

gh
t #

1

Weight #2

Document

Document

Document

Document

Ranking A

Document

Document

Document

Document

Displayed Results

Seeing/Interacting

Interleaving

10



Dueling Bandit Gradient Descent: Visualization

Query

Document

Document

Document

Document

Ranking B

User

W
ei

gh
t #

1

Weight #2

Document

Document

Document

Document

Ranking A

Document

Document

Document

Document

Displayed Results

Seeing/Interacting

Interleaving

Learning

11



Dueling Bandit Gradient Descent: Visualization

Query

Document

Document

Document

Document

Ranking B

User

W
ei

gh
t #

1

Weight #2

Document

Document

Document

Document

Ranking A

Document

Document

Document

Document

Displayed Results

Seeing/Interacting

Interleaving

Learning

12



Dueling Bandit Gradient Descent: Properties

Basis of the online learning to rank field,

virtually all existing methods are extensions of this algorithm

(Schuth et al., 2016; Hofmann et al., 2013; Zhao and King, 2016; Wang et al., 2018a).

Problems with Dueling Bandit Gradient Descent:

• A considerable gap between DBGD and best possible performance.

• Ineffective at optimizing non-linear models.

Advantage of Dueling Bandit Gradient Descent:

• Has a theoretical foundation based on proven regret bounds.
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Pairwise Differentiable Gradient Descent

We recently introduced Pairwise Differentiable Gradient Descent (Oosterhuis and

de Rijke, 2018).

Intuition:

• A pairwise approach can be made unbiased while being differentiable.
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Plackett Luce Model

Pairwise Differentiable Gradient Descent optimizes a Plackett Luce ranking

model, this models a probabilistic distribution over documents.

With the ranking scoring model f(d) the distribution is:

P (d|f,D) =
expf(d)∑

d′∈D expf(d′)
(1)

Unlike DBGD, confidence is explicitly modelled.
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Bias in Pairwise Inference

Similar to existing pairwise methods (Oosterhuis and de Rijke, 2017; Joachims, 2002),

Pairwise Differentiable Gradient Descent infers pairwise document preferences from

user clicks:

document 1

document 2

document 3

document 4

document 5

This inference is based on a cascading assumption.

PDGD weighs inferred preferences to account for position/selection bias.
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Pairwise Differentiable Gradient Descent: Properties

Pairwise Differentiable Gradient Descent does not rely on online evaluation or the

sampling of models.

Advantages claimed by previous work (Oosterhuis and de Rijke, 2018):

• Much better point of convergence i.e. long-term performance.

• Much faster learning i.e. short term performance.

• Computationally much faster.
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Limitations of Previous Existing Results

Comparison based on previous work:

• Pairwise Differentiable Gradient Descent outperforms DBGD.

• Dueling Bandit Gradient Descent has proven sublinear regret bounds.

Problems with the current state of affairs:

• Past comparisons are based on low-noise, cascading click models,

Pairwise Differentiable Gradient Descent assumes cascading behaviour!

• There is a conflict between the proven regret bounds of Dueling Bandit

Gradient Descent and its observed performance.
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Our contribution

First, we critically look at the regret bounds of Dueling Bandit Gradient Descent:

• We prove that its assumptions cannot be true for standard ranking models.

Then we reproduce the comparison under different conditions:

• Both cascading and non-cascading click behaviour.

• Simulated conditions ranging from ideal to extremely difficult.

We simulate near-random behaviour.
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Experimental Setup

Simulations based on largest available industry datasets:

• MSLR-Web10k, Yahoo Webscope, Istella.

User behaviour simulated using cascading and non-cascading click models.

Simulated behaviour ranging from:

• ideal: no noise, no position bias,

• extremely difficult: mostly noise, very high position bias.

Dueling Bandit Gradient Descent with an oracle instead of interleaving, to see the

maximum potential of better interleaving methods.
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Comparison: Dueling Bandit Gradient Descent
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Conclusion

In this reproducibility paper we have:

• shown that an existing proof for regret bounds is unsound.

• Reproduced a comparison between Pairwise Differentiable Gradient Descent

and Dueling Bandit Gradient Descent, and generalized their conclusions from

ideal circumstances to extremely difficult circumstances.

• Shown that under all experimental conditions we could simulate, Pairwise

Differentiable Gradient Descent outperforms previous methods by large margins.

Please continue our work: https://github.com/HarrieO/OnlineLearningToRank
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