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Introduction: Ranking Systems



Ranking Systems

Let’s go back to the beginning:

• Ranking systems are vital for making large document collections accessible.

• They can present users with a small comprehensible selection out of millions

of unordered results.

• Search and recommendation are practically everywhere.
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Ranking Systems: Schematic Example

Collection of objects.

User with a search task.

Ranking 
System

1 2 3 4 5 6 7 8 9 10

Ranking of objects.
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Ranking Systems: Examples
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Ranking Systems: Examples
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Ranking Systems: Examples
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Ranking Systems: Schematic Example Naming

Collection of documents.

User’s search query.

Ranking 
System

1 2 3 4 5 6 7 8 9 10

Ranking of documents.
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Supervised Learning to Rank



Learning to Rank in Information Retrieval

Learning to Rank is a core task in informational retrieval:

• Key component for search and recommendation.

Different from regression where we want to scores to match labels,

for document d and relevance function y(d) and a ranking function fθ(d) ∈ R:

fθ(d) = y(d).

In learning to rank, we only care about the ordering according to fθ:

y(d1) > y(d2)→ fθ(d1) > fθ(d2).
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Supervised Learning to Rank

Traditionally learning to rank is supervised through annotated datasets:

• Relevance annotations for query-document pairs provided by human judges.

Over the years several limitations of annotated datasets have become apparent,

can you think of some limitations?
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Limitations of the Annotated Datasets

Some of the most substantial limitations of annotated datasets are:

• expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).

• unethical to create in privacy-sensitive settings (Wang et al., 2016).

• impossible for small scale problems, e.g., personalization.

• stationary, cannot capture future changes in relevancy (Lefortier et al., 2014).

• not necessarily aligned with actual user preferences (Sanderson, 2010),

i.e., annotators and users often disagree.

9



Limitations of the Supervised Approach

Annotated datasets are valuable and have an important place in research and

development.

However, the supervised approach is:

• Unavailable for practitioners without a considerable budget.

• Impossible for certain ranking problems.

• Often misaligned with true user preferences.

Therefore, there is a need for an alternative learning to rank approach.
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Learning from User Interactions



Learning from User Interactions: Advantages

Learning from user interactions solves the problems of annotations:

• Interactions are virtually free if you have users.

• User behavior is indicative of their preferences.

User interactions also bring their own difficulties:

• Interactions give implicit feedback.
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Learning from User Interactions: Difficulties

User interactions bring their own difficulties:

• Noise:

• Users click for unexpected reasons.

• Often clicks occur not because of relevancy.

• Often clicks do not occur despite of relevancy.

• Bias: Interactions are affected by factors other than relevancy:

• Position bias: Higher ranked documents get more attention.

• Item selection bias: Interactions are limited to the presented documents.

• Presentation bias: Results that are presented differently will be treated

differently.

• . . .
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The Golden Triangle

Image source: http://www.mediative.com/ 13
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Learning from User Interactions: Goal

Goal of unbiased learning to rank:

• Optimize a ranker w.r.t. relevance preferences of users from their interactions.

• Avoid being biased by other factors that influence interactions.
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This Lecture

There are currently two main approaches to Unbiased Learning to Rank:

Online Learning to Rank

• Learning by directly interacting with users.

• Handle biases through randomization of displayed results.

Counterfactual Learning to Rank

• Learning from historical interactions.

• Use a model of user behavior to correct for biases.

We will discuss the latter.
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Counterfactual Evaluation



Counterfactual Evaluation: Introduction

Evaluation is incredibly important before deploying a ranking system.

However, with the limitations of annotated datasets,

can we evaluate a ranker without deploying it or annotated data?

Counterfactual Evaluation:

Evaluate a new ranking function fθ using historical interaction data (e.g., clicks)

collected from a previously deployed ranking function fdeploy.
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Counterfactual Evaluation: Full Information

If we know the true relevance labels (y(di) for all i), we can compute any additive

linearly decomposable IR metric as:

∆(fθ, D, y) =
∑
di∈D

λ(rank(di | fθ, D)) · y(di),

where λ is a rank weighting function, e.g.,

Average Relevant Position ARP : λ(r) = r,

Discounted Cumulative Gain DCG : λ(r) =
1

log2(1 + r)
,

Precision at k Prec@k : λ(r) =
1[r ≤ k]

k
.
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Counterfactual Evaluation: Full Information

y(d1) = 1 Document d1

y(d2) = 0 Document d2

y(d3) = 0 Document d3

y(d4) = 1 Document d4

y(d5) = 0 Document d5
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Counterfactual Evaluation: Partial Information

We often do not know the true relevance labels (y(di)), but can only observe implicit

feedback in the form of, e.g., clicks:

• A click ci on document di is a biased and noisy indicator that di is relevant

• A missing click does not necessarily indicate non-relevance
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Counterfactual Evaluation: Clicks

y(d1) = 1 Document d1 c1 = 1

y(d2) = 0 Document d2 c2 = 0

y(d3) = 0 Document d3 c3 = 1

y(d4) = 1 Document d4 /// c4 = 0

y(d5) = 0 Document d5 /// c5 = 0
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Counterfactual Evaluation: Clicks

Remember that there are many reasons why a click on a document may not occur:

• Relevance: the document may not be relevant.

• Observance: the user may not have examined the document.

• Miscellaneous: various random reasons why a user may not click.

Some of these reasons are considered to be:

• Noise: averaging over many clicks will remove their effect.

• Bias: averaging will not remove their effect.
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Counterfactual Evaluation: Examination User Model

If we only consider examination and relevance, a user click can be modelled by:

• The probability of document di being examined (oi = 1) in a ranking R:

P (oi = 1 | R, di)

• The probability of a click ci = 1 on di given its relevance y(di) and whether it

was examined oi:

P (ci = 1 | oi, y(di))

• Clicks only occur on examined documents, thus the probability of a click in

ranking R is:

P (ci = 1 ∧ oi = 1 | y(di), R) = P (ci = 1 | oi = 1, y(di)) · P (oi = 1 | R, di)
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Counterfactual Evaluation: Naive Estimator

A naive way to estimate is to assume clicks are a unbiased relevance signal:

∆NAIVE(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D)) · ci.

Even if no click noise is present: P (ci = 1 | oi = 1, y(di)) = y(di), this estimator is

biased by the examination probabilities:

Eo[∆NAIVE(fθ, D, c)] = Eo
[ ∑
di∈D

ci · λ(rank(di | fθ, D))

]
= Eo

[ ∑
di∈D

oi · y(di) · λ(rank(di | fθ, D))

]
=
∑
di∈D

P (oi = 1 | R, di) · λ(rank(di | fθ, D)) · y(di).
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Counterfactual Evaluation: Naive Estimator Bias

The biased estimator weights documents according to their examination

probabilities in the ranking R displayed during logging:

Eo[∆NAIVE(fθ, D, c)] =
∑
di∈D

P (oi = 1 | R, di) · λ(rank(di | fθ, D)) · y(di).

In rankings, documents at higher ranks are more likely to be examined: position

bias.

What effect does this have on the evaluation?
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Counterfactual Evaluation: Naive Estimator Bias

The biased estimator weights documents according to their examination

probabilities in the ranking R displayed during logging:

Eo[∆NAIVE(fθ, D, c)] =
∑
di∈D

P (oi = 1 | R, di) · λ(rank(di | fθ, D)) · y(di).

In rankings, documents at higher ranks are more likely to be examined: position

bias.

Position bias causes logging-policy-confirming behavior:

• Documents displayed at higher ranks during logging are incorrectly considered

as more relevant.
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Inverse Propensity Scoring



Counterfactual Evaluation: Inverse Propensity Scoring

Counterfactual evaluation accounts for bias using Inverse Propensity Scoring (IPS):

∆IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci,

• λ(rank(di | fθ, D)): (weighted) rank of document di by ranker fθ,

• ci: observed click on the document in the log,

• P (oi = 1 | R, di): examination probability of di in ranking R displayed during

logging.

This is an unbiased estimate of any additive linearly decomposable IR metric.
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Counterfactual Evaluation: Proof of Unbiasedness

If no click noise is present, this provides an unbiased estimate:

Eo[∆IPS(fθ, D, c)] = Eo

∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci


= Eo

∑
di∈D

oi · λ(rank(di | fθ, D)) · y(di)

P (oi = 1 | R, di)


=
∑
di∈D

P (oi = 1 | R, di) · λ(rank(di | fθ, D)) · y(di)

P (oi = 1 | R, di)

=
∑
di∈D

λ(rank(di | fθ, D)) · y(di)

= ∆(fθ, D, y).
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Remember the Golden Triangle?

The IPS estimator weights clicks inversely proportional to the examination probabilities.

Image source: http://www.mediative.com/ 27
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Counterfactual Evaluation: Robustness of Noise

So far we have assumed no click noise: P (ci = 1 | oi = 1, y(di)) = y(di).

However, the IPS approach still works without this assumption, as long as:

y(di) > y(dj)⇔ P (ci = 1 | oi, y(di)) > P (cj = 1 | oj , y(dj)).

Since we can prove relative differences are inferred unbiasedly:

Eo,c[∆IPS(fθ, D, c)] > Eo,c[∆IPS(fθ′ , D, c)]⇔ ∆(fθ, D) > ∆(fθ′ , D).
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Propensity-weighted Learning to

Rank



Propensity-weighted Learning to Rank (LTR)

The inverse-propensity-scored estimator can unbiasedly estimate performance:

∆IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci.

How do we optimize for this unbiased performance estimate?

• It is not differentiable.

• Common problem for all ranking metrics.
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Upper Bound on Rank

Rank-SVM (Joachims, 2002) optimizes the following differentiable upper bound:

rank(d | fθ, D) =
∑
d′∈R

1[fθ(d) ≤ fθ(d′)]

≤
∑
d′∈R

max(1− (fθ(d)− fθ(d′)), 0) = rank(d | fθ, D).

Alternative choices are possible, i.e., a sigmoid-like bound (with parameter σ):

rank(d | fθ, D) ≤
∑
d′∈R

log2(1 + exp−σ(fθ(d)−fθ(d
′))).

Commonly used for pairwise learning, LambdaMart (Burges, 2010), and

Lambdaloss (Wang et al., 2018b).
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Propensity-weighted LTR: Average Relevance Position

Then for the Average Relevance Position metric:

∆ARP(fθ, D, y) =
∑
di∈D

rank(di | fθ, D) · y(di).

This gives us an unbiased estimator and upper bound:

∆ARP-IPS(fθ, D, c) =
∑
di∈D

rank(di | fθ, D)

P (oi = 1 | R, di)
· ci

≤
∑
di∈D

rank(di | fθ, D)

P (oi = 1 | R, di)
· ci,

This upper bound is differentiable and optimizable by stochastic gradient descent

or Quadratic Programming, i.e., Rank-SVM (Joachims, 2006).
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Propensity-weighted LTR: Additive Metrics

A similar approach can be applied to additive metrics (Agarwal et al., 2019).

If λ is a monotonically decreasing function:

x ≤ y ⇒ λ(x) ≥ λ(y),

then:

rank(d | ·) ≤ rank(d | ·)⇒ λ(rank(d | ·)) ≥ λ(rank(d | ·)).

This provides a lower bound, for instance for Discounted Cumulative Gain (DCG):

1

log2(1 + rank(d | ·))
≥ 1

log2(1 + rank(d | ·))
.
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Propensity-weighted LTR: Discounted Cumulative Gain

Then for the Discounted Cumulative Gain metric:

∆DCG(fθ, D, y) =
∑
di∈D

log2(1 + rank(di | fθ, D))−1 · y(di).

This gives us an unbiased estimator and lower bound:

∆DCG-IPS(fθ, D, c) =
∑
di∈D

log2(1 + rank(di | fθ, D)−1

P (oi = 1 | R, di)
· ci

≥
∑
di∈D

log2(1 + rank(di | fθ, D)−1

P (oi = 1 | R, di)
· ci.

This lower bound is differentiable and optimizable by stochastic gradient descent

or the Convex-Concave Procedure (Agarwal et al., 2019).
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Propensity-weighted LTR: Walkthrough

Overview of the approach:

• Obtain a model of position bias.

• Acquire a large click-log.

• Then for every click in the log:

• Compute the propensity of the click:

P (oi = 1 | R, di).

• Calculate the gradient of the bound on the unbiased estimator:

∇θ
[
λ(rank(di | fθ, D))

P (oi = 1 | R, di)

]
.

• Update the model fθ by adding/subtracting the gradient.
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Propensity-weighted LTR: Semi-synthetic Experiments

Unbiased LTR methods are commonly evaluated through semi-synthetic

experiments (Joachims, 2002; Agarwal et al., 2019; Jagerman et al., 2019).

The experimental setup:

• Traditional LTR dataset, e.g., Yahoo! Webscope (Chapelle and Chang, 2011).

• Simulate queries by uniform sampling from the dataset.

• Create a ranking according to a baseline ranker.

• Simulate clicks by modelling:

• Click Noise, e.g., 10% chance of clicking on a non-relevant document.

• Position Bias, e.g., P (oi = 1 | R, di) = 1
rank(d|R) .

• Hyper-parameter tuning by unbiased evaluation methods.
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Propensity-weighted LTR: Results
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So far so good

So far we have seen how to:

• Perform Counterfactual Evaluation with unbiased estimators.

• Perform Counterfactual LTR by optimizing unbiased estimators.

What essential part are we still missing?
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Estimating Position Bias

Recall that position bias is a form of bias where higher positioned results are more

likely to be observed and therefore clicked.

Assumption: The observation probability only depends on the rank of a document:

P (oi = 1 | i).

The objective is now to estimate, for each rank i, the propensity P (oi = 1 | i).
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Estimating Position Bias



Estimating Position Bias

So far we have seen how to:

• Perform Counterfactual Evaluation with unbiased estimators.

• Perform Counterfactual LTR by optimizing unbiased estimators.

At the core of these methods is the propensity score: P (oi = 1 | R, di), which helps

remove bias from user interactions.

In this section, we will show how this propensity score can be estimated for a

specific kind of bias: position bias.
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Estimating Position Bias

Recall that position bias is a form of bias where higher positioned results are more

likely to be observed and therefore clicked.

Assumption: The observation probability only depends on the rank of a document:

P (oi = 1 | i).

The objective is now to estimate, for each rank i, the propensity P (oi = 1 | i).
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Estimating Position Bias

RandTop-n Algorithm:

Document d1

Document d2

Document d3

Document d4

Document d1

Document d2

Document d3

Document d4 Document d1

Document d2

Document d3

Document d4

Rank 1

Rank 2

Rank 3

Rank 4
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Estimating Position Bias

RandTop-n Algorithm:

1 Repeat:

• Randomly shuffle the top n items

• Record clicks

2 Aggregate clicks per rank

3 Normalize to obtain propensities pi ∝ P (oi | i)

Note: we only need propensities proportional to the true observation probability for

learning.
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Estimating Position Bias

Uniformly randomizing the top n results may negatively impacts users during data

logging.

There are various methods that minimize the impact to the user:

• RandPair: Choose a pivot rank k and only swap a random other document with

the document at this pivot rank (Joachims et al., 2017).

• Interventional Sets: Exploit inherent “randomness” in data coming from multiple

rankers (e.g., A/B tests in production logs) (Agarwal et al., 2017).
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Estimating Position Bias Through Randomization

What is the downside of estimating propensities through randomization?
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Jointly Learning and Estimating



Jointly Learning and Estimating

In the previous sections we have seen:

• Counterfactual ranker evaluation with unbiased estimators.

• Counterfactual LTR by optimizing unbiased estimators.

• Estimating propensity scores through randomization.

Instead of treating propensity estimation and unbiased learning to rank as two

separate tasks, recent work has explored jointly learning rankings and estimating

propensities.
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Jointly Learning and Estimating

Recall that the probability of a click can be decomposed as:

P (ci = 1 ∧ oi = 1 | y(di), R)︸ ︷︷ ︸
click probability

= P (ci = 1 | oi = 1, y(di))︸ ︷︷ ︸
relevance probability

· P (oi | R, di)︸ ︷︷ ︸
observation probability

.

In the previous sections we have seen that, if the observation probability is known,

we can find an unbiased estimate of relevance via IPS.
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Jointly Learning and Estimating

It is possible to jointly learn and estimate by iterating two steps:

1 Learn an optimal ranker given a correct propensity model:

P (ci = 1 | oi = 1, y(di))︸ ︷︷ ︸
relevance probability

=
P (ci = 1 ∧ oi = 1 | y(di), R)

P (oi | R, di)
.

2 Learn an optimal propensity model given a correct ranker:

P (oi | R, di)︸ ︷︷ ︸
observation probability

=
P (ci = 1 ∧ oi = 1 | y(di), R)

P (ci = 1 | oi = 1, y(di))
.
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Jointly Learning and Estimating

• Given an accurate model of relevance, it is possible to find an accurate

propensity model, and vice versa.

• This approach requires no randomization.

• Recent work has solved this via either an Expectation-Maximization

approach (Wang et al. (2018a)) or a Dual Learning Objective (Ai et al.

(2018)).
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Conclusion



Conclusion

In this lecture we discussed:

• User-interactions on rankings are very biased.

• Counterfactual Learning to Rank:

• Unbiased learning from historical interaction logs.

• Correct for position bias with inverse propensity scoring.

• Requires an explicit user model.

• Estimating users’ examination probabilities:

• Through randomization or joint learning.
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Future Directions



Future Directions

• Unbiased Learning to Rank for:

• Recommender systems (Schnabel et al., 2016).

• Personalized rankings in search or recommendation.

• Correcting for more biases:

• Presentation bias, a well known but unaddressed bias.

• Social biases (fair/ethical A.I.) especially when ranking people.

• Learning from other signals:

• Likes, dwell time, conversion, purchases, watch-time, etc.

This is an extremely active area of research!
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Questions and Answers

Thank you for participating!
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Notation



Notation Used in the Slides i

Definition Notation Example

Query q –

Candidate documents D –

Document d ∈ D –

Ranking R (R1, R2, . . . , Rn)

Document at rank i Ri Ri = d

Relevance y : D → N y(d) = 2

Ranker model with weights θ fθ : D → R fθ(d) = 0.75

Click ci ∈ {0, 1} –

Observation oi ∈ {0, 1} –

Rank of d when fθ ranks D rank(d | fθ, D) rank(d | fθ, D) = 4
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Notation Used in the Slides ii

Differentiable upper bound on rank(d, | fθ, D) rank(d, | fθ, D) –

Average Relevant Position metric ARP –

Discounted Cumulative Gain metric DCG –

Precision at k metric Prec@k –

A performance measure or estimator ∆ –
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Resources i

• Tensorflow Learning to Rank, allows for inverse propensity scoring:

https://github.com/tensorflow/ranking

• Inverse Propensity Scored Rank-SVM:

https://www.cs.cornell.edu/people/tj/svm_light/svm_proprank.html

• Data and code for comparing counterfactual and online learning to rank

http://github.com/rjagerman/sigir2019-user-interactions

• An older online learning to rank framework: Lerot

https://bitbucket.org/ilps/lerot/
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