
Optimizing a Ranking System with User Interaction

Logs: Counterfactual Learning to Rank

Harrie Oosterhuis

December 2, 2019

University of Amsterdam

oosterhuis@uva.nl

Based on the SIGIR 2019 Tutorial:

Unbiased Learning to Rank: Counterfactual and Online Approaches

Harrie Oosterhuis, Rolf Jagerman, Maarten de Rijke

Introduction: Ranking Systems

Ranking Systems

Let’s go back to the beginning:

• Ranking systems are vital for making large document collections accessible.

• They can present users with a small comprehensible selection out of millions

of unordered results.

• Search and recommendation are practically everywhere.

1

Ranking Systems: Schematic Example

Collection of objects.

User with a search task.

Ranking
System

1 2 3 4 5 6 7 8 9 10

Ranking of objects.

2

Ranking Systems: Examples

3

Ranking Systems: Examples

4

Ranking Systems: Examples

5

Ranking Systems: Schematic Example Naming

Collection of documents.

User’s search query.

Ranking
System

1 2 3 4 5 6 7 8 9 10

Ranking of documents.

6

Supervised Learning to Rank

Learning to Rank in Information Retrieval

Learning to Rank is a core task in informational retrieval:

• Key component for search and recommendation.

Different from regression where we want to scores to match labels,

for document d and relevance function y(d) and a ranking function fθ(d) ∈ R:

fθ(d) = y(d).

In learning to rank, we only care about the ordering according to fθ:

y(d1) > y(d2)→ fθ(d1) > fθ(d2).

7

Supervised Learning to Rank

Traditionally learning to rank is supervised through annotated datasets:

• Relevance annotations for query-document pairs provided by human judges.

Over the years several limitations of annotated datasets have become apparent,

can you think of some limitations?

8

Limitations of the Annotated Datasets

Some of the most substantial limitations of annotated datasets are:

• expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).

• unethical to create in privacy-sensitive settings (Wang et al., 2016).

• impossible for small scale problems, e.g., personalization.

• stationary, cannot capture future changes in relevancy (Lefortier et al., 2014).

• not necessarily aligned with actual user preferences (Sanderson, 2010),

i.e., annotators and users often disagree.

9

Limitations of the Supervised Approach

Annotated datasets are valuable and have an important place in research and

development.

However, the supervised approach is:

• Unavailable for practitioners without a considerable budget.

• Impossible for certain ranking problems.

• Often misaligned with true user preferences.

Therefore, there is a need for an alternative learning to rank approach.

10

Learning from User Interactions

Learning from User Interactions: Advantages

Learning from user interactions solves the problems of annotations:

• Interactions are virtually free if you have users.

• User behavior is indicative of their preferences.

User interactions also bring their own difficulties:

• Interactions give implicit feedback.

11

Learning from User Interactions: Difficulties

User interactions bring their own difficulties:

• Noise:

• Users click for unexpected reasons.

• Often clicks occur not because of relevancy.

• Often clicks do not occur despite of relevancy.

• Bias: Interactions are affected by factors other than relevancy:

• Position bias: Higher ranked documents get more attention.

• Item selection bias: Interactions are limited to the presented documents.

• Presentation bias: Results that are presented differently will be treated

differently.

• . . .

12

The Golden Triangle

Image source: http://www.mediative.com/ 13

http://www.mediative.com/

Learning from User Interactions: Goal

Goal of unbiased learning to rank:

• Optimize a ranker w.r.t. relevance preferences of users from their interactions.

• Avoid being biased by other factors that influence interactions.

14

This Lecture

There are currently two main approaches to Unbiased Learning to Rank:

Online Learning to Rank

• Learning by directly interacting with users.

• Handle biases through randomization of displayed results.

Counterfactual Learning to Rank

• Learning from historical interactions.

• Use a model of user behavior to correct for biases.

We will discuss the latter.

15

Counterfactual Evaluation

Counterfactual Evaluation: Introduction

Evaluation is incredibly important before deploying a ranking system.

However, with the limitations of annotated datasets,

can we evaluate a ranker without deploying it or annotated data?

Counterfactual Evaluation:

Evaluate a new ranking function fθ using historical interaction data (e.g., clicks)

collected from a previously deployed ranking function fdeploy.

16

Counterfactual Evaluation: Full Information

If we know the true relevance labels (y(di) for all i), we can compute any additive

linearly decomposable IR metric as:

∆(fθ, D, y) =
∑
di∈D

λ(rank(di | fθ, D)) · y(di),

where λ is a rank weighting function, e.g.,

Average Relevant Position ARP : λ(r) = r,

Discounted Cumulative Gain DCG : λ(r) =
1

log2(1 + r)
,

Precision at k Prec@k : λ(r) =
1[r ≤ k]

k
.

17

Counterfactual Evaluation: Full Information

y(d1) = 1 Document d1

y(d2) = 0 Document d2

y(d3) = 0 Document d3

y(d4) = 1 Document d4

y(d5) = 0 Document d5

18

Counterfactual Evaluation: Partial Information

We often do not know the true relevance labels (y(di)), but can only observe implicit

feedback in the form of, e.g., clicks:

• A click ci on document di is a biased and noisy indicator that di is relevant

• A missing click does not necessarily indicate non-relevance

19

Counterfactual Evaluation: Clicks

y(d1) = 1 Document d1 c1 = 1

y(d2) = 0 Document d2 c2 = 0

y(d3) = 0 Document d3 c3 = 1

y(d4) = 1 Document d4 /// c4 = 0

y(d5) = 0 Document d5 /// c5 = 0

20

Counterfactual Evaluation: Clicks

Remember that there are many reasons why a click on a document may not occur:

• Relevance: the document may not be relevant.

• Observance: the user may not have examined the document.

• Miscellaneous: various random reasons why a user may not click.

Some of these reasons are considered to be:

• Noise: averaging over many clicks will remove their effect.

• Bias: averaging will not remove their effect.

21

Counterfactual Evaluation: Examination User Model

If we only consider examination and relevance, a user click can be modelled by:

• The probability of document di being examined (oi = 1) in a ranking R:

P (oi = 1 | R, di)

• The probability of a click ci = 1 on di given its relevance y(di) and whether it

was examined oi:

P (ci = 1 | oi, y(di))

• Clicks only occur on examined documents, thus the probability of a click in

ranking R is:

P (ci = 1 ∧ oi = 1 | y(di), R) = P (ci = 1 | oi = 1, y(di)) · P (oi = 1 | R, di)

22

Counterfactual Evaluation: Naive Estimator

A naive way to estimate is to assume clicks are a unbiased relevance signal:

∆NAIVE(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D)) · ci.

Even if no click noise is present: P (ci = 1 | oi = 1, y(di)) = y(di), this estimator is

biased by the examination probabilities:

Eo[∆NAIVE(fθ, D, c)] = Eo
[∑
di∈D

ci · λ(rank(di | fθ, D))

]
= Eo

[∑
di∈D

oi · y(di) · λ(rank(di | fθ, D))

]
=
∑
di∈D

P (oi = 1 | R, di) · λ(rank(di | fθ, D)) · y(di).
23

Counterfactual Evaluation: Naive Estimator Bias

The biased estimator weights documents according to their examination

probabilities in the ranking R displayed during logging:

Eo[∆NAIVE(fθ, D, c)] =
∑
di∈D

P (oi = 1 | R, di) · λ(rank(di | fθ, D)) · y(di).

In rankings, documents at higher ranks are more likely to be examined: position

bias.

What effect does this have on the evaluation?

24

Counterfactual Evaluation: Naive Estimator Bias

The biased estimator weights documents according to their examination

probabilities in the ranking R displayed during logging:

Eo[∆NAIVE(fθ, D, c)] =
∑
di∈D

P (oi = 1 | R, di) · λ(rank(di | fθ, D)) · y(di).

In rankings, documents at higher ranks are more likely to be examined: position

bias.

Position bias causes logging-policy-confirming behavior:

• Documents displayed at higher ranks during logging are incorrectly considered

as more relevant.

24

Inverse Propensity Scoring

Counterfactual Evaluation: Inverse Propensity Scoring

Counterfactual evaluation accounts for bias using Inverse Propensity Scoring (IPS):

∆IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci,

• λ(rank(di | fθ, D)): (weighted) rank of document di by ranker fθ,

• ci: observed click on the document in the log,

• P (oi = 1 | R, di): examination probability of di in ranking R displayed during

logging.

This is an unbiased estimate of any additive linearly decomposable IR metric.

25

Counterfactual Evaluation: Proof of Unbiasedness

If no click noise is present, this provides an unbiased estimate:

Eo[∆IPS(fθ, D, c)] = Eo

∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci


= Eo

∑
di∈D

oi · λ(rank(di | fθ, D)) · y(di)

P (oi = 1 | R, di)


=
∑
di∈D

P (oi = 1 | R, di) · λ(rank(di | fθ, D)) · y(di)

P (oi = 1 | R, di)

=
∑
di∈D

λ(rank(di | fθ, D)) · y(di)

= ∆(fθ, D, y).

26

Remember the Golden Triangle?

The IPS estimator weights clicks inversely proportional to the examination probabilities.

Image source: http://www.mediative.com/ 27

http://www.mediative.com/

Counterfactual Evaluation: Robustness of Noise

So far we have assumed no click noise: P (ci = 1 | oi = 1, y(di)) = y(di).

However, the IPS approach still works without this assumption, as long as:

y(di) > y(dj)⇔ P (ci = 1 | oi, y(di)) > P (cj = 1 | oj , y(dj)).

Since we can prove relative differences are inferred unbiasedly:

Eo,c[∆IPS(fθ, D, c)] > Eo,c[∆IPS(fθ′ , D, c)]⇔ ∆(fθ, D) > ∆(fθ′ , D).

28

Propensity-weighted Learning to

Rank

Propensity-weighted Learning to Rank (LTR)

The inverse-propensity-scored estimator can unbiasedly estimate performance:

∆IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci.

How do we optimize for this unbiased performance estimate?

• It is not differentiable.

• Common problem for all ranking metrics.

29

Upper Bound on Rank

Rank-SVM (Joachims, 2002) optimizes the following differentiable upper bound:

rank(d | fθ, D) =
∑
d′∈R

1[fθ(d) ≤ fθ(d′)]

≤
∑
d′∈R

max(1− (fθ(d)− fθ(d′)), 0) = rank(d | fθ, D).

Alternative choices are possible, i.e., a sigmoid-like bound (with parameter σ):

rank(d | fθ, D) ≤
∑
d′∈R

log2(1 + exp−σ(fθ(d)−fθ(d
′))).

Commonly used for pairwise learning, LambdaMart (Burges, 2010), and

Lambdaloss (Wang et al., 2018b).

30

Propensity-weighted LTR: Average Relevance Position

Then for the Average Relevance Position metric:

∆ARP(fθ, D, y) =
∑
di∈D

rank(di | fθ, D) · y(di).

This gives us an unbiased estimator and upper bound:

∆ARP-IPS(fθ, D, c) =
∑
di∈D

rank(di | fθ, D)

P (oi = 1 | R, di)
· ci

≤
∑
di∈D

rank(di | fθ, D)

P (oi = 1 | R, di)
· ci,

This upper bound is differentiable and optimizable by stochastic gradient descent

or Quadratic Programming, i.e., Rank-SVM (Joachims, 2006).
31

Propensity-weighted LTR: Additive Metrics

A similar approach can be applied to additive metrics (Agarwal et al., 2019).

If λ is a monotonically decreasing function:

x ≤ y ⇒ λ(x) ≥ λ(y),

then:

rank(d | ·) ≤ rank(d | ·)⇒ λ(rank(d | ·)) ≥ λ(rank(d | ·)).

This provides a lower bound, for instance for Discounted Cumulative Gain (DCG):

1

log2(1 + rank(d | ·))
≥ 1

log2(1 + rank(d | ·))
.

32

Propensity-weighted LTR: Discounted Cumulative Gain

Then for the Discounted Cumulative Gain metric:

∆DCG(fθ, D, y) =
∑
di∈D

log2(1 + rank(di | fθ, D))−1 · y(di).

This gives us an unbiased estimator and lower bound:

∆DCG-IPS(fθ, D, c) =
∑
di∈D

log2(1 + rank(di | fθ, D)−1

P (oi = 1 | R, di)
· ci

≥
∑
di∈D

log2(1 + rank(di | fθ, D)−1

P (oi = 1 | R, di)
· ci.

This lower bound is differentiable and optimizable by stochastic gradient descent

or the Convex-Concave Procedure (Agarwal et al., 2019).
33

Propensity-weighted LTR: Walkthrough

Overview of the approach:

• Obtain a model of position bias.

• Acquire a large click-log.

• Then for every click in the log:

• Compute the propensity of the click:

P (oi = 1 | R, di).

• Calculate the gradient of the bound on the unbiased estimator:

∇θ
[
λ(rank(di | fθ, D))

P (oi = 1 | R, di)

]
.

• Update the model fθ by adding/subtracting the gradient.

34

Propensity-weighted LTR: Semi-synthetic Experiments

Unbiased LTR methods are commonly evaluated through semi-synthetic

experiments (Joachims, 2002; Agarwal et al., 2019; Jagerman et al., 2019).

The experimental setup:

• Traditional LTR dataset, e.g., Yahoo! Webscope (Chapelle and Chang, 2011).

• Simulate queries by uniform sampling from the dataset.

• Create a ranking according to a baseline ranker.

• Simulate clicks by modelling:

• Click Noise, e.g., 10% chance of clicking on a non-relevant document.

• Position Bias, e.g., P (oi = 1 | R, di) = 1
rank(d|R) .

• Hyper-parameter tuning by unbiased evaluation methods.

35

Propensity-weighted LTR: Results

103 104 105 106 107 108

Number of Training Clicks

12

13

14

15

16
Av

er
ag

e
Re

lev
an

tP
os

iti
on

Naive
IPS
Production
Oracle

36

So far so good

So far we have seen how to:

• Perform Counterfactual Evaluation with unbiased estimators.

• Perform Counterfactual LTR by optimizing unbiased estimators.

What essential part are we still missing?

37

Estimating Position Bias

Recall that position bias is a form of bias where higher positioned results are more

likely to be observed and therefore clicked.

Assumption: The observation probability only depends on the rank of a document:

P (oi = 1 | i).

The objective is now to estimate, for each rank i, the propensity P (oi = 1 | i).

38

Estimating Position Bias

Estimating Position Bias

So far we have seen how to:

• Perform Counterfactual Evaluation with unbiased estimators.

• Perform Counterfactual LTR by optimizing unbiased estimators.

At the core of these methods is the propensity score: P (oi = 1 | R, di), which helps

remove bias from user interactions.

In this section, we will show how this propensity score can be estimated for a

specific kind of bias: position bias.

39

Estimating Position Bias

Recall that position bias is a form of bias where higher positioned results are more

likely to be observed and therefore clicked.

Assumption: The observation probability only depends on the rank of a document:

P (oi = 1 | i).

The objective is now to estimate, for each rank i, the propensity P (oi = 1 | i).

40

Estimating Position Bias

RandTop-n Algorithm:

Document d1

Document d2

Document d3

Document d4

Document d1

Document d2

Document d3

Document d4 Document d1

Document d2

Document d3

Document d4

Rank 1

Rank 2

Rank 3

Rank 4

41

Estimating Position Bias

RandTop-n Algorithm:

1 Repeat:

• Randomly shuffle the top n items

• Record clicks

2 Aggregate clicks per rank

3 Normalize to obtain propensities pi ∝ P (oi | i)

Note: we only need propensities proportional to the true observation probability for

learning.

42

Estimating Position Bias

Uniformly randomizing the top n results may negatively impacts users during data

logging.

There are various methods that minimize the impact to the user:

• RandPair: Choose a pivot rank k and only swap a random other document with

the document at this pivot rank (Joachims et al., 2017).

• Interventional Sets: Exploit inherent “randomness” in data coming from multiple

rankers (e.g., A/B tests in production logs) (Agarwal et al., 2017).

43

Estimating Position Bias Through Randomization

What is the downside of estimating propensities through randomization?

44

Jointly Learning and Estimating

Jointly Learning and Estimating

In the previous sections we have seen:

• Counterfactual ranker evaluation with unbiased estimators.

• Counterfactual LTR by optimizing unbiased estimators.

• Estimating propensity scores through randomization.

Instead of treating propensity estimation and unbiased learning to rank as two

separate tasks, recent work has explored jointly learning rankings and estimating

propensities.

45

Jointly Learning and Estimating

Recall that the probability of a click can be decomposed as:

P (ci = 1 ∧ oi = 1 | y(di), R)︸ ︷︷ ︸
click probability

= P (ci = 1 | oi = 1, y(di))︸ ︷︷ ︸
relevance probability

· P (oi | R, di)︸ ︷︷ ︸
observation probability

.

In the previous sections we have seen that, if the observation probability is known,

we can find an unbiased estimate of relevance via IPS.

46

Jointly Learning and Estimating

It is possible to jointly learn and estimate by iterating two steps:

1 Learn an optimal ranker given a correct propensity model:

P (ci = 1 | oi = 1, y(di))︸ ︷︷ ︸
relevance probability

=
P (ci = 1 ∧ oi = 1 | y(di), R)

P (oi | R, di)
.

2 Learn an optimal propensity model given a correct ranker:

P (oi | R, di)︸ ︷︷ ︸
observation probability

=
P (ci = 1 ∧ oi = 1 | y(di), R)

P (ci = 1 | oi = 1, y(di))
.

47

Jointly Learning and Estimating

• Given an accurate model of relevance, it is possible to find an accurate

propensity model, and vice versa.

• This approach requires no randomization.

• Recent work has solved this via either an Expectation-Maximization

approach (Wang et al. (2018a)) or a Dual Learning Objective (Ai et al.

(2018)).

48

Conclusion

Conclusion

In this lecture we discussed:

• User-interactions on rankings are very biased.

• Counterfactual Learning to Rank:

• Unbiased learning from historical interaction logs.

• Correct for position bias with inverse propensity scoring.

• Requires an explicit user model.

• Estimating users’ examination probabilities:

• Through randomization or joint learning.

49

Future Directions

Future Directions

• Unbiased Learning to Rank for:

• Recommender systems (Schnabel et al., 2016).

• Personalized rankings in search or recommendation.

• Correcting for more biases:

• Presentation bias, a well known but unaddressed bias.

• Social biases (fair/ethical A.I.) especially when ranking people.

• Learning from other signals:

• Likes, dwell time, conversion, purchases, watch-time, etc.

This is an extremely active area of research!

50

Questions and Answers

Thank you for participating!

51

Notation

Notation Used in the Slides i

Definition Notation Example

Query q –

Candidate documents D –

Document d ∈ D –

Ranking R (R1, R2, . . . , Rn)

Document at rank i Ri Ri = d

Relevance y : D → N y(d) = 2

Ranker model with weights θ fθ : D → R fθ(d) = 0.75

Click ci ∈ {0, 1} –

Observation oi ∈ {0, 1} –

Rank of d when fθ ranks D rank(d | fθ, D) rank(d | fθ, D) = 4

52

Notation Used in the Slides ii

Differentiable upper bound on rank(d, | fθ, D) rank(d, | fθ, D) –

Average Relevant Position metric ARP –

Discounted Cumulative Gain metric DCG –

Precision at k metric Prec@k –

A performance measure or estimator ∆ –

53

Resources i

• Tensorflow Learning to Rank, allows for inverse propensity scoring:

https://github.com/tensorflow/ranking

• Inverse Propensity Scored Rank-SVM:

https://www.cs.cornell.edu/people/tj/svm_light/svm_proprank.html

• Data and code for comparing counterfactual and online learning to rank

http://github.com/rjagerman/sigir2019-user-interactions

• An older online learning to rank framework: Lerot

https://bitbucket.org/ilps/lerot/

54

https://github.com/tensorflow/ranking
https://www.cs.cornell.edu/people/tj/svm_light/svm_proprank.html
http://github.com/rjagerman/sigir2019-user-interactions
https://bitbucket.org/ilps/lerot/

References i

A. Agarwal, S. Basu, T. Schnabel, and T. Joachims. Effective evaluation using logged bandit feedback

from multiple loggers. In Proceedings of the 23rd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 687–696. ACM, 2017.

A. Agarwal, K. Takatsu, I. Zaitsev, and T. Joachims. A general framework for counterfactual

learning-to-rank. In 42nd International ACM SIGIR Conference on Research & Development in

Information Retrieval, page (to appear). ACM, 2019.

Q. Ai, K. Bi, C. Luo, J. Guo, and W. B. Croft. Unbiased learning to rank with unbiased propensity

estimation. In Proceedings of the 41st International ACM SIGIR conference on Research and

Development in Information Retrieval, pages 385–394. ACM, 2018.

C. J. Burges. From ranknet to lambdarank to lambdamart: An overview. Learning, 11(23-581):81,

2010.

O. Chapelle and Y. Chang. Yahoo! Learning to Rank Challenge Overview. Journal of Machine

Learning Research, 14:1–24, 2011.

55

References ii

R. Jagerman, H. Oosterhuis, and M. de Rijke. To model or to intervene: A comparison of

counterfactual and online learning to rank from user interactions. In 42nd International ACM SIGIR

Conference on Research & Development in Information Retrieval, page (to appear). ACM, 2019.

T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 133–142. ACM,

2002.

T. Joachims. Training linear svms in linear time. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 217–226. ACM, 2006.

T. Joachims, A. Swaminathan, and T. Schnabel. Unbiased learning-to-rank with biased feedback. In

Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pages

781–789. ACM, 2017.

D. Lefortier, P. Serdyukov, and M. de Rijke. Online exploration for detecting shifts in fresh intent. In

CIKM 2014: 23rd ACM Conference on Information and Knowledge Management. ACM, November

2014.

T. Qin and T.-Y. Liu. Introducing letor 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013.

56

References iii

M. Sanderson. Test collection based evaluation of information retrieval systems. Foundations and

Trends in Information Retrieval, 4(4):247–375, 2010.

T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims. Recommendations as

treatments: debiasing learning and evaluation. In Proceedings of the 33rd International Conference

on International Conference on Machine Learning-Volume 48, pages 1670–1679. JMLR. org, 2016.

X. Wang, M. Bendersky, D. Metzler, and M. Najork. Learning to rank with selection bias in personal

search. In Proceedings of the 39th International ACM SIGIR conference on Research and

Development in Information Retrieval, pages 115–124. ACM, 2016.

X. Wang, N. Golbandi, M. Bendersky, D. Metzler, and M. Najork. Position bias estimation for

unbiased learning to rank in personal search. In Proceedings of the Eleventh ACM International

Conference on Web Search and Data Mining, pages 610–618. ACM, 2018a.

X. Wang, C. Li, N. Golbandi, M. Bendersky, and M. Najork. The lambdaloss framework for ranking

metric optimization. In Proceedings of the 27th ACM International Conference on Information and

Knowledge Management, pages 1313–1322. ACM, 2018b.

57

Acknowledgments

All content represents the opinion of the author(s), which is not necessarily shared or endorsed by their

employers and/or sponsors.

58

	Introduction: Ranking Systems
	Supervised Learning to Rank
	Learning from User Interactions
	Counterfactual Evaluation
	Inverse Propensity Scoring
	Propensity-weighted Learning to Rank
	Estimating Position Bias
	Jointly Learning and Estimating
	Conclusion
	Future Directions
	Notation

