The State of the Online Learning to Rank Field

Harrie Oosterhuis

December 2, 2019

University of Amsterdam

oosterhuis@uva.nl

Based on the SIGIR 2019 Tutorial: Unbiased Learning to Rank: Counterfactual and Online Approaches Harrie Oosterhuis, Rolf Jagerman, Maarten de Rijke

Introduction: Learning to Rank from User Interactions

Solves most of the problems of expert-annotations:

- Interactions are **virtually free** if you have users.
- User behaviour gives implicit feedback.

These methods have to handle:

- Noise: Users click for unexpected reasons.
- Biases: Interactions are affected by position and selection bias.

The Golden Triangle

Goal of unbiased learning to rank:

- Optimize a ranker w.r.t. relevance preferences of users from their interactions.
- Avoid being biased by other factors that influence interactions.

Online Evaluation

Often we need to answer the **question**:

Is ranker A be preferred over ranker B?

Specific aspects of interactions in rankings can be used for efficient comparisons.

Interleaving (Joachims, 2003):

- Take the two rankings for a query from two rankers .
- Create an interleaved ranking, based on both rankings.
- Clicks on an interleaved ranking provide preference signals between rankers.

The idea behind interleaving:

- Randomize display positions of documents to deal with position bias.
- Limit randomization to maintain user experience.

Team-Draft Interleaving (Radlinski et al., 2008) is affected by position bias:

• Similar rankers can be inferred equal when a preference should be found.

Other interleaving methods are **proven** to be **unbiased**:

- Probabilistic Interleaving (Hofmann et al., 2011)
- Optimized Interleaving (Radlinski and Craswell, 2013)

Dueling Bandit Gradient Descent

Introduced by Yue and Joachims (2009) as the first online learning to rank method.

Intuition:

• if online evaluation can tell us if a ranker is better than another, then we can use it to find an improvement of our system.

By **sampling model variants** and **comparing** them with **interleaving**, the *gradient* of a model w.r.t. user satisfaction can be **estimated**.

User

Weight #2

8

Yue and Joachims (2009) prove that under the assumptions:

- There is a **single optimal** set of parameters: θ^* .
- The **utility space** w.r.t. θ is **convex** and **smooth**,
 - i.e., small changes in θ lead to small changes in user experience.

Then Dueling Bandit Gradient Descent is **proven** to have a **sublinear regret**:

- The algorithm will **eventually** approximate the ideal model.
- The duration of time is effected by the number of parameters of the model, the smoothness of the space, the unit chosen, etc.

Simulations based on offline datasets: **user behavior** is based on the **annotations**. As a result, we can **measure** how close the **model** is getting to their **satisfaction**.

Simulated results on the MSLR-WEB10k dataset, a perfect user (left) and an informational user (right).

Image credits: (Oosterhuis, 2018).

Reusing Historical Interactions
Hofmann et al. (2013) introduced the idea of **guiding exploration** by **reusing previous interactions**.

Intuition: if **previous interactions** showed that a **direction is unfruitful** then we should **avoid it in the future**.

Hofmann et al. (2013) introduced the Candidate Pre-Selection method:

- Sample a large number of rankers to create a candidate set.
- Use historical interactions to select the most promising candidate for DBGD.

Reusing Historical Interactions: Performance

Simulated results on the NP2003 dataset.

Image credits: graph from (Hofmann et al., 2013).

Reusing Historical Interactions: Long Term Performance

Simulated results on the NP2003 dataset.

Remember, in the online setting the **performance cannot be measured**, thus **early-stopping is unfeasible**.

Image credits: graph from (Oosterhuis et al., 2016).

Besides Hofmann et al. (2013) **other work** has also tried **reusing historical interactions** for online learning to rank: (Zhao and King, 2016; Wang et al., 2018).

The problem with these works is that:

- they do not consider the long-term convergence.
- they were not evaluated on the largest available industry datasets.

As a result, it is **still unclear** whether we can **reliably reuse historical interactions** during online learning.

Multileave Gradient Descent

The introduction of **multileaving** in online evaluation allowed for **multiple rankers** being compared simultaneously from a single interaction.

A **natural extension** of Dueling Bandit Gradient Descent is to combine it with multileaving, resulting in **Multileave Gradient Descent** (Schuth et al., 2016).

Multileaving allows comparisons with multiple candidate rankers, increasing the chance of finding an improvement.

Multileave Gradient Descent: Visualization

Feature #2

Results on the MSRL10k dataset under simulated users:

Properties of Multileave Gradient Descent:

- Vastly speeds up the learning rate of Dueling Bandit Gradient Descent.
 - Much better user experience.
- Instead of limiting (guiding) exploration, it is done more efficiently.
- Huge computational costs, large number of rankers have to be applied.

Problems with Dueling Bandit Gradient Descent

A problem with Dueling Bandit Gradient Descent and all its extensions:

• Their **performance at convergence** is **much worse** than offline approaches, even **under ideal user interactions**.

DBGD problems: Empirical

Results on the MSRL10k dataset under simulated users:

How is this possible, if it has proven sub-linear regret?

```
Image credits: (Oosterhuis, 2018).
```

Remember the regret of Dueling Bandit Gradient Descent made two assumptions:

- There is a single optimal model: θ^* .
- The **utility space is smooth** w.r.t. to the model weights θ .

These **assumptions do not hold** for all models that are used in practice (Oosterhuis and de Rijke, 2019).

To prove this we use the fact that the utility u is scale invariant w.r.t. a ranking function $f_{\theta}(\cdot)$:

$$\forall \theta, \quad \forall \alpha \in \mathbb{R}_{>0}, \quad u(f_{\theta}(\cdot)) = u(\alpha f_{\theta}(\cdot)).$$

DBGD Assumptions: Smoothness Visualization

Intuition behind the **smoothness problem** for linear ranking models:

- Every model in a line from the origin in any direction is equivalent.
- Any sphere around the origin contains every possible ranking model^a.
- The **distance** between the *best* and the *worst* model becomes **infinitely small** near the origin.

^aExcept for the trivial random model on the origin.

Theoretical properties:

• Currently, no sound regret bounds proven.

Empirical observations:

- Methods do not approach optimal performance.
- Neural models have no advantage over linear models.

Possible solutions:

- Extend the algorithm (the last decade of research) or introduce new model.
- Find an approach different to the bandit approach.

Pairwise Differentiable Gradient Descent

We recently introduced **Pairwise Differentiable Gradient Descent** (Oosterhuis and de Rijke, 2018):

 Very different from previous Online Learning to Rank methods, that relied on sampling model variations similar to evolutionary approaches.

Intuition:

• A **pairwise** approach can be made **unbiased**, while being **differentiable**, without relying on online evaluation method or the sampling of models.

Pairwise Differentiable Gradient Descent optimizes a **Plackett Luce** ranking model, this models a **probabilistic distribution over documents**.

With the ranking scoring model $f_{\theta}(\mathbf{d})$ the distribution is:

$$P(d|D,\theta) = \frac{\exp^{f_{\theta}(\mathbf{d})}}{\sum_{d' \in D} \exp^{f_{\theta}(\mathbf{d}')}}.$$

Confidence is explicitly modelled and **exploration** depends on the **available documents**, thus it **naturally varies per query** and even within the ranking.

Similar to existing pairwise methods (Oosterhuis and de Rijke, 2017; Joachims, 2002), Pairwise Differentiable Gradient Descent infers **pairwise document preferences from user clicks**:

This approach is **biased**:

• Some preferences are more likely to be inferred due to position/selection bias.

Reversed Pair Rankings

Let $R^*(d_i, d_j, R)$ be R but with the **positions** of d_i and d_j swapped:

We assume:

 For a preference d_i ≻ d_j inferred from ranking R, if both are equally relevant the opposite preference d_j ≻ d_i is equally likely to be inferred from R^{*}(d_i, d_j, R).

Then scoring as if R and R^* are equally likely to occur makes the gradient unbiased.

The **ratio** between the probability of the ranking and the reversed pair ranking indicates the **bias between the two directions**:

$$\rho(d_i, d_j, R) = \frac{P(R^*(d_i, d_j, R)|f, D)}{P(R|f, D) + P(R^*(d_i, d_j, R)|f, D)}.$$

We use this ratio to **unbias the gradient estimation**:

$$\nabla f_{\theta}(\cdot) \approx \sum_{d_i > \mathbf{c} d_j} \rho(d_i, d_j, R) \nabla P(d_i \succ d_j | D, \theta).$$

Unbiasedness of Pairwise Differentiable Gradient Descent

Under the reversed pair ranking assumption, we prove that **the expected estimated gradient** can be written as:

$$E[\nabla f_{\theta}(\cdot)] = \sum_{d_i, d_j} \alpha_{ij} (f'_{\theta}(\mathbf{d_i}) - f'_{\theta}(\mathbf{d_j})).$$

Where the weights α_{ij} will match the user preferences in expectation:

$$d_i =_{rel} d_j \Leftrightarrow \alpha_{ij} = 0,$$

$$d_i >_{rel} d_j \Leftrightarrow \alpha_{ij} > 0,$$

$$d_i <_{rel} d_j \Leftrightarrow \alpha_{ij} < 0.$$

Thus the estimated gradient is unbiased w.r.t. document pair preferences.

Pairwise Differentiable Gradient Descent: Method

Start with initial model θ_t , then indefinitely:

- Wait for a user query.
- **2** Sample (without replacement) a ranking *R* from the document distribution:

$$P(d|D, \theta_t) = \frac{\exp^{f_{\theta_t}(\mathbf{d})}}{\sum_{d' \in D} \exp^{f_{\theta_t}(\mathbf{d}')}}$$

- **3 Display** the ranking R to the user.
- **4** Infer document preferences from the user clicks: c.
- **6** Update model according to the estimated (unbiased) gradient:

$$\nabla f_{\theta_t}(\cdot) \approx \sum_{d_i > \mathbf{c} d_j} \rho(d_i, d_j, R) \nabla P(d_i \succ d_j | D, \theta_t).$$

Pairwise Differentiable Gradient Descent: Results Long Term

Results of simulations on the MSLR-WEB10k dataset, a perfect user (left) and an informational user (right).

Image credits: (Oosterhuis and de Rijke, 2018).

Comparison of Online Methods

Recent most generalized comparison so far (Oosterhuis and de Rijke, 2019).

Simulations based on largest available industry datasets:

• MSLR-Web10k, Yahoo Webscope, Istella.

Simulated behavior ranging from:

- ideal: no noise, no position bias,
- extremely difficult: mostly noise, very high position bias.

Dueling Bandit Gradient Descent with an **oracle instead of interleaving**, to see the **maximum potential** of better interleaving methods.

Empirical Comparison: DBGD

Results of simulations on the MSLR-WEB10k dataset.

Empirical Comparison: PDGD

Results of simulations on the MSLR-WEB10k dataset.

Empirical Comparison: All

Results of simulations on the MSLR-WEB10k dataset.
Dueling Bandit Gradient Descent (DBGD):

- Unable to reach optimal performance in ideal settings.
- Strongly affected by noise and position bias.

Pairwise Differentiable Gradient Descent (PDGD):

- Capable of reaching optimal performance in ideal settings.
- Robust to noise and position bias.
- Considerably outperforms DBGD in all tested experimental settings.

Theoretical Comparison

Dueling Bandit Based Approaches:

- Sublinear regret bounds proven, unsound for ranking problems as commonly applied.
- Single update steps are as unbiased as its interleaving method.

The Differentiable Pairwise Based Approach:

- No regret bounds proven.
- Single update steps are unbiased w.r.t. pairwise document preferences.

For the common ranking problem, neither approach has a theoretical advantage.

The **theory** for Online Learning to Rank is **inadequate** and needs **re-evaluation**.

The Dueling Bandit approach appears to be lacking for optimizing ranking systems.

Novel alternative approaches have high potential:

• Pairwise Differential Gradient Descent is a clear example.

What about Counterfactual Learning to Rank?

Single empirical comparison so far (Jagerman et al., 2019).

Using the simulated setup common in unbiased learning to rank, we apply both **Inverse Propensity Scoring** and **Pairwise Differentiable Gradient Descent.**

Counterfactual Learning to Rank:

- Slightly higher performance under:
 - no item-selection-bias,
 - little interaction noise.
- Very affected by high interaction noise.

Online Learning to Rank:

- More reliable performance across settings.
- Handles item-selection bias well.
- More robust to noise

Overall the empirical results suggest that Online Learning to Rank is more reliable.

Counterfactual Learning to Rank:

- Explicit position bias model.
- Proven to unbiasedly optimize ranking metrics.
- Can be interactive.
- Applicable to any historical interactions.

Online Learning to Rank:

- No explicit user model.
- Not proven to unbiasedly optimize ranking metrics.
- Only effective when interactive.
- Not applicable to all historical interactions.

In theory Counterfactual Learning to Rank has all the advantageous properties.

Conclusion

Conclusion

- Online approaches allow for unbiased and responsive learning to rank:
 - Immediately adapt to user behavior.
 - Perform randomization at each step, though limited.
- The Online Learning to Rank field seems to be in trouble:
 - Theoretical guarantees are unsound for the standard ranking problem.
 - Dueling Bandit Gradient Descent method is unable to solve toy-problems.
- Comparison with the Counterfactual approach:
 - Empirically: Online methods appear to be more reliable.
 - Theoretically: Counterfactual methods are much more advantageous.

Future of Online Learning to Rank

Time for Some Fortune Telling

I am now going to attempt to predict the future! (Based on my personal expectations.)

If you are seeing this you missed the talk!

Thank you for listening!

Notation

Notation Used in the Slides i

Definition	Notation	Example
Query	q	-
Candidate documents	D	_
Document	$d \in D$	_
Ranking	R	(R_1, R_2, \ldots, R_n)
Document at rank i	R_i	$R_i = d$
Relevance	$y:D\to\mathbb{N}$	y(d) = 2
Ranker model with weights $ heta$	$f_{\theta}: D \to \mathbb{R}$	$f_{\theta}(d) = 0.75$
Click	$c_i \in \{0, 1\}$	-
Observation	$o_i \in \{0, 1\}$	_
Rank of d when $f_{ heta}$ ranks D	$\mathit{rank}(d \mid f_{\theta}, D)$	$rank(d \mid f_{\theta}, D) = 4$

Differentiable upper bound on $\mathit{rank}(d, f_{\theta}, D)$	$\overline{rank}(d, \mid f_{\theta}, D)$	_
Average Relevant Position metric	ARP	_
Discounted Cumulative Gain metric	DCG	_
Precision at k metric	Prec@k	_
A performance measure or estimator	Δ	_

- Pairwise Differentiable Gradient Descent and Multileave Gradient Descent: https://github.com/HarrieO/OnlineLearningToRank
- Data and code for comparing counterfactual and online learning to rank http://github.com/rjagerman/sigir2019-user-interactions
- An older online learning to rank framework: Lerot https://bitbucket.org/ilps/lerot/

- K. Hofmann, S. Whiteson, and M. de Rijke. A probabilistic method for inferring preferences from clicks. In *Proceedings of the 20th ACM international conference on Information and knowledge management*, pages 249–258. ACM, 2011.
- K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing historical interaction data for faster online learning to rank for ir. In *Proceedings of the sixth ACM international conference on Web search and data mining*, pages 183–192. ACM, 2013.
- R. Jagerman, H. Oosterhuis, and M. de Rijke. To model or to intervene: A comparison of counterfactual and online learning to rank from user interactions. In 42nd International ACM SIGIR Conference on Research & Development in Information Retrieval, page (to appear). ACM, 2019.
- T. Joachims. Optimizing search engines using clickthrough data. In *Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 133–142. ACM, 2002.
- T. Joachims. Evaluating retrieval performance using clickthrough data. In J. Franke, G. Nakhaeizadeh, and I. Renz, editors, *Text Mining*. Physica Verlag, 2003.

References ii

- H. Oosterhuis. Learning to rank and evaluation in the online setting. 12th Russian Summer School in Information Retrieval (RuSSIR 2018), 2018.
- H. Oosterhuis and M. de Rijke. Sensitive and scalable online evaluation with theoretical guarantees. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pages 77–86. ACM, 2017.
- H. Oosterhuis and M. de Rijke. Differentiable unbiased online learning to rank. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pages 1293–1302. ACM, 2018.
- H. Oosterhuis and M. de Rijke. Optimizing ranking models in an online setting. In Advances in Information Retrieval, pages 382–396, Cham, 2019. Springer International Publishing.
- H. Oosterhuis, A. Schuth, and M. de Rijke. Probabilistic multileave gradient descent. In *European Conference on Information Retrieval*, pages 661–668. Springer, 2016.
- F. Radlinski and N. Craswell. Optimized interleaving for online retrieval evaluation. In *Proceedings of the sixth ACM international conference on Web search and data mining*, pages 245–254. ACM, 2013.

References iii

- F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality? In Proceedings of the 17th ACM conference on Information and knowledge management, pages 43–52. ACM, 2008.
- A. Schuth, H. Oosterhuis, S. Whiteson, and M. de Rijke. Multileave gradient descent for fast online learning to rank. In *Proceedings of the Ninth ACM International Conference on Web Search and Data Mining*, pages 457–466. ACM, 2016.
- H. Wang, R. Langley, S. Kim, E. McCord-Snook, and H. Wang. Efficient exploration of gradient space for online learning to rank. *arXiv preprint arXiv:1805.07317*, 2018.
- Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling bandits problem. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 1201–1208. ACM, 2009.
- T. Zhao and I. King. Constructing reliable gradient exploration for online learning to rank. In *Proceedings of the 25th ACM International on Conference on Information and Knowledge Management*, pages 1643–1652. ACM, 2016.

All content represents the opinion of the author(s), which is not necessarily shared or endorsed by their employers and/or sponsors.