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Introduction: Learning to Rank

from User Interactions



Learning to Rank from User Interactions

Solves most of the problems of expert-annotations:

• Interactions are virtually free if you have users.

• User behaviour gives implicit feedback.

These methods have to handle:

• Noise: Users click for unexpected reasons.

• Biases: Interactions are affected by position and selection bias.
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The Golden Triangle
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Learning from User Interactions: Goal

Goal of unbiased learning to rank:

• Optimize a ranker w.r.t. relevance preferences of users from their interactions.

• Avoid being biased by other factors that influence interactions.
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Online Evaluation



Online Evaluation: Interleaving

Often we need to answer the question:

Is ranker A be preferred over ranker B?

Specific aspects of interactions in rankings can be used for efficient comparisons.

Interleaving (Joachims, 2003):

• Take the two rankings for a query from two rankers .

• Create an interleaved ranking, based on both rankings.

• Clicks on an interleaved ranking provide preference signals between rankers.
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Online Evaluation: Team-Draft Interleaving
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Online Evaluation: Interleaving

The idea behind interleaving:

• Randomize display positions of documents to deal with position bias.

• Limit randomization to maintain user experience.

Team-Draft Interleaving (Radlinski et al., 2008) is affected by position bias:

• Similar rankers can be inferred equal when a preference should be found.

Other interleaving methods are proven to be unbiased:

• Probabilistic Interleaving (Hofmann et al., 2011)

• Optimized Interleaving (Radlinski and Craswell, 2013)
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Dueling Bandit Gradient Descent



Dueling Bandit Gradient Descent: Introduction

Introduced by Yue and Joachims (2009) as the first online learning to rank method.

Intuition:

• if online evaluation can tell us if a ranker is better than another,

then we can use it to find an improvement of our system.

By sampling model variants and comparing them with interleaving,

the gradient of a model w.r.t. user satisfaction can be estimated.

7



Dueling Bandit Gradient Descent: Visualization
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Dueling Bandit Gradient Descent: Properties

Yue and Joachims (2009) prove that under the assumptions:

• There is a single optimal set of parameters: θ∗.

• The utility space w.r.t. θ is convex and smooth,

i.e., small changes in θ lead to small changes in user experience.

Then Dueling Bandit Gradient Descent is proven to have a sublinear regret:

• The algorithm will eventually approximate the ideal model.

• The duration of time is effected by the number of parameters of the model, the

smoothness of the space, the unit chosen, etc.
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Dueling Bandit Gradient Descent: Visualization

Simulations based on offline datasets: user behavior is based on the annotations.

As a result, we can measure how close the model is getting to their satisfaction.
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Simulated results on the MSLR-WEB10k dataset,

a perfect user (left) and an informational user (right).

Image credits: (Oosterhuis, 2018). 10
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Reusing Historical Interactions

Hofmann et al. (2013) introduced the idea of guiding exploration by reusing

previous interactions.

Intuition: if previous interactions showed that a direction is unfruitful then we

should avoid it in the future.

Hofmann et al. (2013) introduced the Candidate Pre-Selection method:

• Sample a large number of rankers to create a candidate set.

• Use historical interactions to select the most promising candidate for DBGD.
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Reusing Historical Interactions: Performance

Simulated results on the NP2003 dataset.

Image credits: graph from (Hofmann et al., 2013). 12



Reusing Historical Interactions: Long Term Performance
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Remember, in the online setting the performance cannot be measured,

thus early-stopping is unfeasible.

Image credits: graph from (Oosterhuis et al., 2016). 13



Reusing Historical Interactions: Other Work

Besides Hofmann et al. (2013) other work has also tried reusing historical

interactions for online learning to rank: (Zhao and King, 2016; Wang et al., 2018).

The problem with these works is that:

• they do not consider the long-term convergence.

• they were not evaluated on the largest available industry datasets.

As a result, it is still unclear whether we can reliably reuse historical interactions

during online learning.
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Multileave Gradient Descent

The introduction of multileaving in online evaluation allowed for multiple rankers

being compared simultaneously from a single interaction.

A natural extension of Dueling Bandit Gradient Descent is to combine it with

multileaving, resulting in Multileave Gradient Descent (Schuth et al., 2016).

Multileaving allows comparisons with multiple candidate rankers,

increasing the chance of finding an improvement.

15



Multileave Gradient Descent: Visualization
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Multileave Gradient Descent: Results

Results on the MSRL10k dataset under simulated users:
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Multileave Gradient Descent: Conclusion

Properties of Multileave Gradient Descent:

• Vastly speeds up the learning rate of Dueling Bandit Gradient Descent.

• Much better user experience.

• Instead of limiting (guiding) exploration, it is done more efficiently.

• Huge computational costs, large number of rankers have to be applied.
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Problems with Dueling Bandit Gradient Descent

A problem with Dueling Bandit Gradient Descent and all its extensions:

• Their performance at convergence is much worse than offline approaches,

even under ideal user interactions.
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DBGD problems: Empirical

Results on the MSRL10k dataset under simulated users:
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Image credits: (Oosterhuis, 2018). 20



Problems with the Dueling Bandit Gradient Descent Bounds

Remember the regret of Dueling Bandit Gradient Descent made two assumptions:

• There is a single optimal model: θ∗.

• The utility space is smooth w.r.t. to the model weights θ.

These assumptions do not hold for all models that are used in practice (Oosterhuis

and de Rijke, 2019).

To prove this we use the fact that the utility u is scale invariant w.r.t. a ranking

function fθ(·):

∀θ, ∀α ∈ R>0, u(fθ(·)) = u(αfθ(·)).
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DBGD Assumptions: Smoothness Visualization

Intuition behind the smoothness problem for

linear ranking models:

• Every model in a line from the origin in any

direction is equivalent.

• Any sphere around the origin contains every

possible ranking modela.

• The distance between the best and the worst

model becomes infinitely small near the origin.

aExcept for the trivial random model on the origin.
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DBGD Problems: Conclusion

Theoretical properties:

• Currently, no sound regret bounds proven.

Empirical observations:

• Methods do not approach optimal performance.

• Neural models have no advantage over linear models.

Possible solutions:

• Extend the algorithm (the last decade of research) or introduce new model.

• Find an approach different to the bandit approach.
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Pairwise Differentiable Gradient Descent

We recently introduced Pairwise Differentiable Gradient Descent (Oosterhuis and

de Rijke, 2018):

• Very different from previous Online Learning to Rank methods,

that relied on sampling model variations similar to evolutionary approaches.

Intuition:

• A pairwise approach can be made unbiased, while being differentiable,

without relying on online evaluation method or the sampling of models.
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Plackett Luce Model

Pairwise Differentiable Gradient Descent optimizes a Plackett Luce ranking

model, this models a probabilistic distribution over documents.

With the ranking scoring model fθ(d) the distribution is:

P (d|D, θ) =
expfθ(d)∑

d′∈D expfθ(d′)
.

Confidence is explicitly modelled and exploration depends on the available

documents, thus it naturally varies per query and even within the ranking.
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Bias in Pairwise Inference

Similar to existing pairwise methods (Oosterhuis and de Rijke, 2017; Joachims, 2002),

Pairwise Differentiable Gradient Descent infers pairwise document preferences from

user clicks:

document 1

document 2

document 3

document 4

document 5

This approach is biased:

• Some preferences are more likely to be inferred due to position/selection bias.
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Reversed Pair Rankings

Let R∗(di, dj , R) be R but with the positions of di and dj swapped:

document 1

document 2

document 3

document 4

document 5

document 3

document 2

document 1

document 4

document 5

We assume:

• For a preference di � dj inferred from ranking R, if both are equally relevant

the opposite preference dj � di is equally likely to be inferred from R∗(di, dj , R).

Then scoring as if R and R∗ are equally likely to occur makes the gradient unbiased.
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Unbiasing the Pairwise Update

The ratio between the probability of the ranking and the reversed pair ranking

indicates the bias between the two directions:

ρ(di, dj , R) =
P (R∗(di, dj , R)|f,D)

P (R|f,D) + P (R∗(di, dj , R)|f,D)
.

We use this ratio to unbias the gradient estimation:

∇fθ(·) ≈
∑
di>cdj

ρ(di, dj , R)∇P (di � dj |D, θ).
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Unbiasedness of Pairwise Differentiable Gradient Descent

Under the reversed pair ranking assumption, we prove that the expected estimated

gradient can be written as:

E[∇fθ(·)] =
∑
di,dj

αij(f
′
θ(di)− f ′θ(dj)).

Where the weights αij will match the user preferences in expectation:

di =rel dj ⇔ αij = 0,

di >rel dj ⇔ αij > 0,

di <rel dj ⇔ αij < 0.

Thus the estimated gradient is unbiased w.r.t. document pair preferences.
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Pairwise Differentiable Gradient Descent: Method

Start with initial model θt, then indefinitely:

1 Wait for a user query.

2 Sample (without replacement) a ranking R from the document distribution:

P (d|D, θt) =
expfθt (d)∑

d′∈D expfθt (d
′)
.

3 Display the ranking R to the user.

4 Infer document preferences from the user clicks: c.

5 Update model according to the estimated (unbiased) gradient:

∇fθt(·) ≈
∑
di>cdj

ρ(di, dj , R)∇P (di � dj |D, θt).
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Pairwise Differentiable Gradient Descent: Visualization
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Pairwise Differentiable Gradient Descent: Visualization
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Pairwise Differentiable Gradient Descent: Results Long Term
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Results of simulations on the MSLR-WEB10k dataset,

a perfect user (left) and an informational user (right).

Image credits: (Oosterhuis and de Rijke, 2018). 32



Comparison of Online Methods



Empirical Comparison: Introduction

Recent most generalized comparison so far (Oosterhuis and de Rijke, 2019).

Simulations based on largest available industry datasets:

• MSLR-Web10k, Yahoo Webscope, Istella.

Simulated behavior ranging from:

• ideal: no noise, no position bias,

• extremely difficult: mostly noise, very high position bias.

Dueling Bandit Gradient Descent with an oracle instead of interleaving,

to see the maximum potential of better interleaving methods.
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Empirical Comparison: DBGD
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Image credits: (Oosterhuis and de Rijke, 2019). 34



Empirical Comparison: PDGD
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Empirical Comparison: All
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Empirical Comparison: Conclusion

Dueling Bandit Gradient Descent (DBGD):

• Unable to reach optimal performance in ideal settings.

• Strongly affected by noise and position bias.

Pairwise Differentiable Gradient Descent (PDGD):

• Capable of reaching optimal performance in ideal settings.

• Robust to noise and position bias.

• Considerably outperforms DBGD in all tested experimental settings.
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Theoretical Comparison

Dueling Bandit Based Approaches:

• Sublinear regret bounds proven,

unsound for ranking problems as commonly applied.

• Single update steps are as unbiased as its interleaving method.

The Differentiable Pairwise Based Approach:

• No regret bounds proven.

• Single update steps are unbiased w.r.t. pairwise document preferences.

For the common ranking problem, neither approach has a theoretical advantage.
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The Future for Online Learning to Rank

The theory for Online Learning to Rank is inadequate and needs re-evaluation.

The Dueling Bandit approach appears to be lacking for optimizing ranking systems.

Novel alternative approaches have high potential:

• Pairwise Differential Gradient Descent is a clear example.
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What about Counterfactual

Learning to Rank?



Empirical Comparison

Single empirical comparison so far (Jagerman et al., 2019).

Using the simulated setup common in unbiased learning to rank, we apply both

Inverse Propensity Scoring and Pairwise Differentiable Gradient Descent.
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Empirical Comparison: Conclusion

Counterfactual Learning to Rank:

• Slightly higher performance under:

• no item-selection-bias,

• little interaction noise.

• Very affected by high interaction

noise.

Online Learning to Rank:

• More reliable performance across

settings.

• Handles item-selection bias well.

• More robust to noise

Overall the empirical results suggest that Online Learning to Rank is more reliable.
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Theoretical Comparison: Conclusion

Counterfactual Learning to Rank:

• Explicit position bias model.

• Proven to unbiasedly optimize

ranking metrics.

• Can be interactive.

• Applicable to any historical

interactions.

Online Learning to Rank:

• No explicit user model.

• Not proven to unbiasedly optimize

ranking metrics.

• Only effective when interactive.

• Not applicable to all historical

interactions.

In theory Counterfactual Learning to Rank has all the advantageous properties.
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Conclusion

• Online approaches allow for unbiased and responsive learning to rank:

• Immediately adapt to user behavior.

• Perform randomization at each step, though limited.

• The Online Learning to Rank field seems to be in trouble:

• Theoretical guarantees are unsound for the standard ranking problem.

• Dueling Bandit Gradient Descent method is unable to solve toy-problems.

• Comparison with the Counterfactual approach:

• Empirically: Online methods appear to be more reliable.

• Theoretically: Counterfactual methods are much more advantageous.
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Future of Online Learning to Rank



Time for Some Fortune Telling

I am now going to attempt to predict the future!

(Based on my personal expectations.)
42



The Future of Online Learning to Rank

If you are seeing this you missed the talk!
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Questions and Answers

Thank you for listening!
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Notation



Notation Used in the Slides i

Definition Notation Example

Query q –

Candidate documents D –

Document d ∈ D –

Ranking R (R1, R2, . . . , Rn)

Document at rank i Ri Ri = d

Relevance y : D → N y(d) = 2

Ranker model with weights θ fθ : D → R fθ(d) = 0.75

Click ci ∈ {0, 1} –

Observation oi ∈ {0, 1} –

Rank of d when fθ ranks D rank(d | fθ, D) rank(d | fθ, D) = 4
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Notation Used in the Slides ii

Differentiable upper bound on rank(d, | fθ, D) rank(d, | fθ, D) –

Average Relevant Position metric ARP –

Discounted Cumulative Gain metric DCG –

Precision at k metric Prec@k –

A performance measure or estimator ∆ –
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Resources i

• Pairwise Differentiable Gradient Descent and Multileave Gradient Descent:

https://github.com/HarrieO/OnlineLearningToRank

• Data and code for comparing counterfactual and online learning to rank

http://github.com/rjagerman/sigir2019-user-interactions

• An older online learning to rank framework: Lerot

https://bitbucket.org/ilps/lerot/

47
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