

Optimizing Ranking Systems from User Interactions

Harrie Oosterhuis

February 22, 2019

University of Amsterdam

oosterhuis@uva.nl

https://staff.fnwi.uva.nl/h.r.oosterhuis

Based on Differentiable Unbiased Online Learning to Rank (Oosterhuis and de Rijke, 2018).

Introduction

Ranking systems are the basis for search and most recommendation.

Learning to rank enables the optimization of ranking systems:

- Directly improves user experience.
- Increase engagements, conversions, sales, views, etc.

Ranking systems are the basis for search and most recommendation.

Learning to rank enables the optimization of ranking systems:

- Directly improves user experience.
- Increase engagements, conversions, sales, views, etc.

Traditionally learning to rank uses annotated datasets:

• Relevance annotations for query-document pairs provided by human judges.

• expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).

- expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).
- unethical to create in privacy-sensitive settings (Wang et al., 2016).

- expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).
- unethical to create in privacy-sensitive settings (Wang et al., 2016).
- impossible for small scale problems e.g. personalization.

- expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).
- unethical to create in privacy-sensitive settings (Wang et al., 2016).
- impossible for small scale problems e.g. personalization.
- stationary, cannot capture future changes in relevancy (Lefortier et al., 2014).

- expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).
- unethical to create in privacy-sensitive settings (Wang et al., 2016).
- impossible for small scale problems e.g. personalization.
- stationary, cannot capture future changes in relevancy (Lefortier et al., 2014).
- not necessarily aligned with actual user preferences (Sanderson, 2010),

i.e. annotators and users often disagree.

Learning from User Interactions

Learning from user interactions solves the problems of annotations:

- Interactions are virtually free if you have users.
- User **behaviour** is indicative of their **preferences**.

Learning from user interactions solves the problems of annotations:

- Interactions are virtually free if you have users.
- User **behaviour** is indicative of their **preferences**.
- Interactions give implicit feedback.

User interactions bring their own difficulties:

- Noise:
 - Users click for **unexpected reasons**.
 - Often clicks occur **not because** of relevancy.

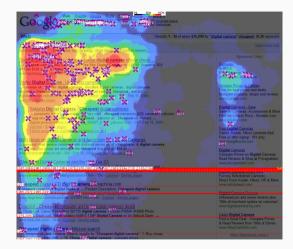
User interactions bring their own difficulties:

- Noise:
 - Users click for **unexpected reasons**.
 - Often clicks occur **not because** of relevancy.
 - Often clicks do not occur despite of relevancy.

User interactions bring their own difficulties:

- Noise:
 - Users click for **unexpected reasons**.
 - Often clicks occur **not because** of relevancy.
 - Often clicks do not occur despite of relevancy.
- Bias: Interactions are affected by factors other than relevancy:
 - Position bias: Higher ranked documents get more attention.
 - Selection bias: Interactions are limited to the presented documents.
 - Presentation bias: Results that are presented different will be treated different.
 - ...

The Golden Triangle



Source: http://www.mediative.com/

Goal of unbiased learning to rank from user interactions:

- Learn the relevance preferences of the user from their interactions.
- Avoid being biased by other factors that influence interactions.

Learning from Historical Interactions:

- Learn/estimate a model of user behaviour including their biases.
- Learn from historical data while **adjusting** for these **biases**.
- See: (Wang et al., 2018b; Joachims et al., 2017; Ai et al., 2018)

Online Learning to Rank:

- Algorithms that can intervene during the learning process.
- Handle biases by having control over displayed results.

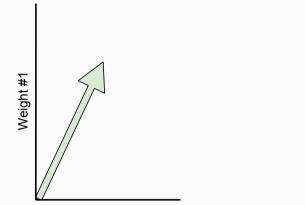
Dueling Bandit Gradient Descent

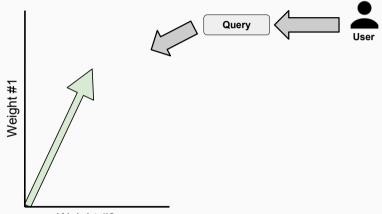
Introduced by Yue and Joachims (2009) as the first online learning to rank method.

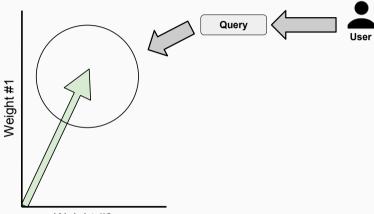
Intuition:

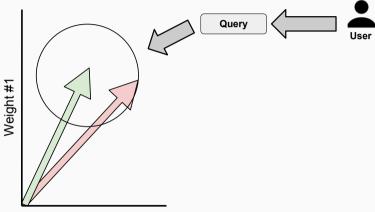
- Interleaving can compare rankers from user interactions.
- By sampling model variants and comparing them with interleaving, the *gradient* of a model w.r.t. user satisfaction can be **estimated**.

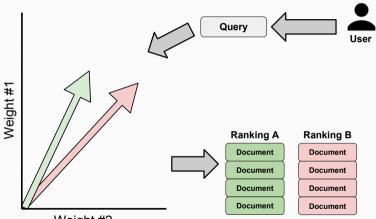
User

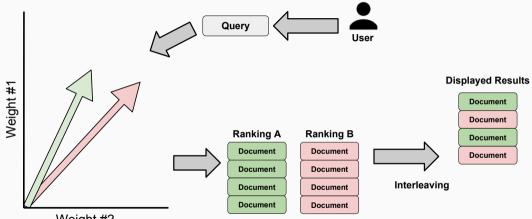




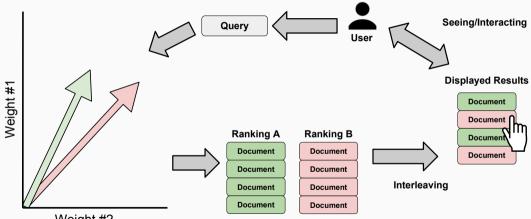


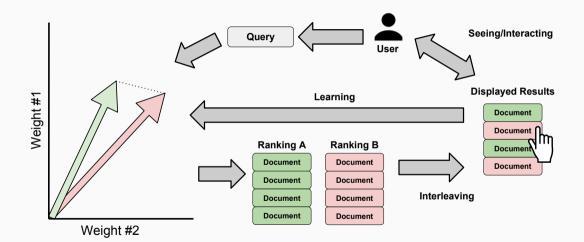






Weight #2





16



Basis of the online learning to rank field,

virtually all existing methods are **extensions** of this algorithm (Schuth et al., 2016; Hofmann et al., 2013; Zhao and King, 2016; Wang et al., 2018a).

Problems with Dueling Bandit Gradient Descent:

- A considerable gap between *offline* learning to rank performance, even for subsequent extensions of method.
- Ineffective at optimizing non-linear models.

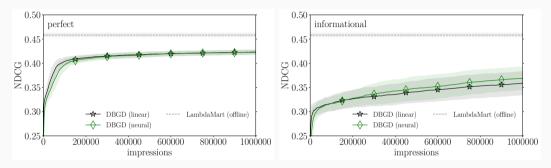
Basis of the online learning to rank field,

virtually all existing methods are **extensions** of this algorithm (Schuth et al., 2016; Hofmann et al., 2013; Zhao and King, 2016; Wang et al., 2018a).

Problems with Dueling Bandit Gradient Descent:

- A considerable gap between *offline* learning to rank performance, even for subsequent extensions of method.
- Ineffective at optimizing non-linear models.
- No proven regret bounds for ranking problems (Oosterhuis and de Rijke, 2019).

Dueling Bandit Gradient Descent: Results



Results of simulations on the MSLR-WEB10k dataset, a perfect user (left) and an informational user (right).

Pairwise Differentiable Gradient Descent

We recently introduced **Pairwise Differentiable Gradient Descent** (Oosterhuis and de Rijke, 2018):

• Very different from previous Online Learning to Rank methods, that relied on sampling model variations.

Intuition:

• A pairwise approach can be made **unbiased**, while being **differentiable**, without relying on online evaluation methods or the sampling of models.

Pairwise Differentiable Gradient Descent optimizes a **Plackett Luce** ranking model, this models a **probabilistic distribution over documents**.

With the ranking scoring model $f(\mathbf{d})$ the distribution is:

$$P(d|f,D) = \frac{\exp^{f(\mathbf{d})}}{\sum_{d' \in D} \exp^{f(\mathbf{d}')}} \tag{1}$$

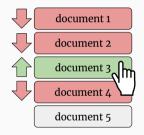
Pairwise Differentiable Gradient Descent optimizes a **Plackett Luce** ranking model, this models a **probabilistic distribution over documents**.

With the ranking scoring model $f(\mathbf{d})$ the distribution is:

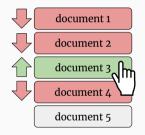
$$P(d|f,D) = \frac{\exp^{f(\mathbf{d})}}{\sum_{d'\in D} \exp^{f(\mathbf{d}')}}$$
(1)

Unlike DBGD, confidence is explicitly modelled and exploration naturally varies per query and even within the ranking.

Similar to existing pairwise methods (Oosterhuis and de Rijke, 2017; Joachims, 2002), Pairwise Differentiable Gradient Descent infers **pairwise document preferences from user clicks**:



Similar to existing pairwise methods (Oosterhuis and de Rijke, 2017; Joachims, 2002), Pairwise Differentiable Gradient Descent infers **pairwise document preferences from user clicks**:

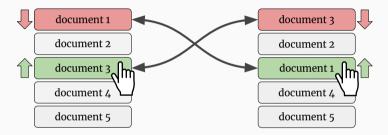


This approach is **biased**:

• Some preferences are more likely to be inferred due to position/selection bias.

Reversed Pair Rankings

Let $R^*(d_i, d_j, R)$ be R but with the **positions** of d_i and d_j swapped:



Reversed Pair Rankings

Let $R^*(d_i, d_j, R)$ be R but with the positions of d_i and d_j swapped:

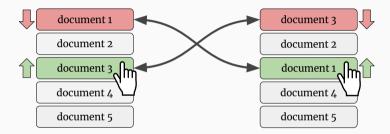


We assume:

 For a preference d_i ≻ d_j inferred from ranking R, if both are equally relevant the opposite preference d_j ≻ d_i is equally likely to be inferred from R^{*}(d_i, d_j, R).

Reversed Pair Rankings

Let $R^*(d_i, d_j, R)$ be R but with the positions of d_i and d_j swapped:



We assume:

 For a preference d_i ≻ d_j inferred from ranking R, if both are equally relevant the opposite preference d_j ≻ d_i is equally likely to be inferred from R^{*}(d_i, d_j, R).

Then scoring as if R and R^* are equally likely to occur makes the gradient unbiased.

The **ratio** between the probability of the ranking and the reversed pair ranking indicates the **bias between the two directions**:

$$\rho(d_i, d_j, R) = \frac{P(R^*(d_i, d_j, R) | f, D)}{P(R | f, D) + P(R^*(d_i, d_j, R) | f, D)}.$$
(2)

We use this ratio to **unbias the gradient estimation**:

$$\nabla f \approx \sum_{d_i > \mathbf{c} d_j} \rho(d_i, d_j, R) \nabla P(d_i \succ d_j | f, D).$$
(3)

Unbiasedness of Pairwise Differentiable Gradient Descent

Under the reversed pair ranking assumption, we prove that **the expected estimated gradient** can be written as:

$$E[\nabla f] = \sum_{d_i, d_j} \alpha_{ij} (f'(\mathbf{d_i}) - f'(\mathbf{d_j})).$$
(4)

Unbiasedness of Pairwise Differentiable Gradient Descent

Under the reversed pair ranking assumption, we prove that **the expected estimated gradient** can be written as:

$$E[\nabla f] = \sum_{d_i, d_j} \alpha_{ij} (f'(\mathbf{d_i}) - f'(\mathbf{d_j})).$$
(4)

Where the weights α_{ij} will match the user preferences in expectation:

$$d_i =_{rel} d_j \Leftrightarrow \alpha_{ij} = 0, \tag{5}$$

$$d_i >_{rel} d_j \Leftrightarrow \alpha_{ij} > 0, \tag{6}$$

$$d_i <_{rel} d_j \Leftrightarrow \alpha_{ij} < 0. \tag{7}$$

Thus the estimated gradient is unbiased w.r.t. document pair preferences.

Start with initial model f_t . Then indefinitely:

• Wait for a user query.

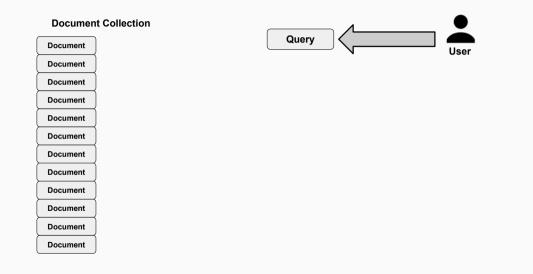
2 Sample (without replacement) a ranking R from the document distribution:

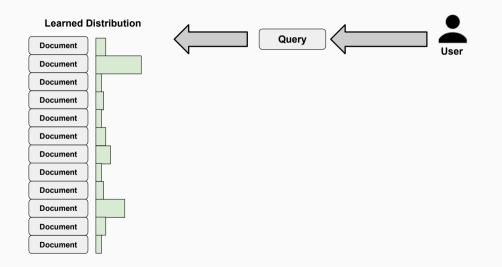
$$P(d|D, f_t) = \frac{\exp^{f_t(\mathbf{d})}}{\sum_{d' \in D} \exp^{f_t(\mathbf{d}')}}.$$
(8)

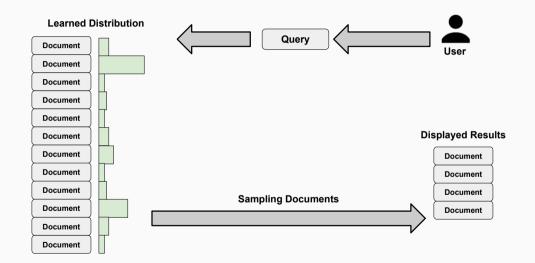
- **3 Display** the ranking R to the user.
- **④** Infer document preferences from the user clicks: c.
- **5** Update model according to the estimated (unbiased) gradient:

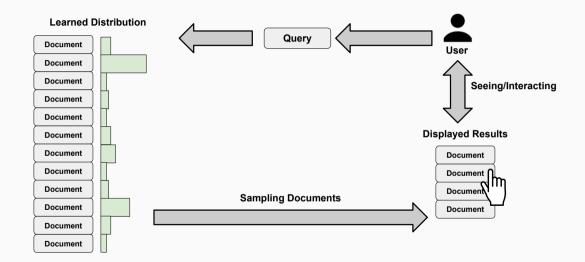
$$\nabla f_t \approx \sum_{d_i > \mathbf{c} d_j} \rho(d_i, d_j, R) \nabla P(d_i \succ d_j | D, f_t).$$
(9)

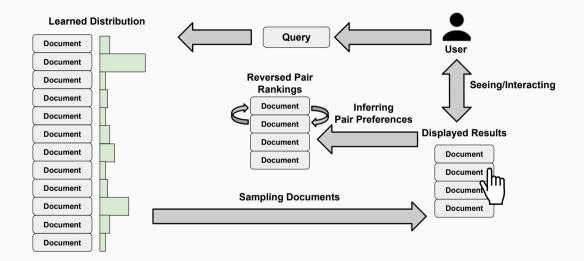


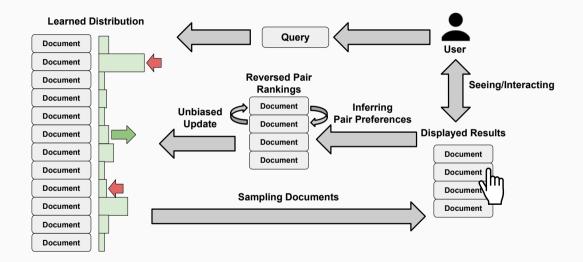












Experimental Results

Comparison of Pairwise Differentiable Gradient Descent with **previous Online** Learning to Rank methods.

Simulations based on the annotated learning-to-rank datasets.

• Largest available industry datasets: MSLR-Web10k, Yahoo Webscope, Istella.

User behaviour simulated using cascading click models.

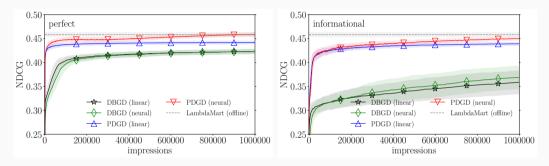
Experiments repeated under varying levels of noise and bias.

Results across all datasets (MSLR-Web10k, Yahoo Webscope, Istella) we observe:

- Large improvements in performance of convergence under all levels of noise.
- Much faster learning (better user experience) under all levels of noise.

Findings further generalized in follow-up work (Oosterhuis and de Rijke, 2019).

Pairwise Differentiable Gradient Descent: Results Long Term



Results from simulations on the MSLR-WEB10k dataset, a perfect user (left) and an informational user (right).

Conclusion

• the first online method to convergence near offline levels of performance.

- the first online method to convergence near offline levels of performance.
- considerably faster learning (user experience) than before.

- the first online method to convergence near offline levels of performance.
- considerably faster learning (user experience) than before.
- performance of an non-linear model to exceed linear model.

- the first online method to convergence near offline levels of performance.
- considerably faster learning (user experience) than before.
- performance of an non-linear model to exceed linear model.
- computational efficiency much greater than most previous methods.

- the first online method to convergence near offline levels of performance.
- considerably faster learning (user experience) than before.
- performance of an non-linear model to exceed linear model.
- computational efficiency much greater than most previous methods.
- currently no proven regret bounds.

• The time is ripe for real-world experiments.

- The time is ripe for real-world experiments.
- We can compare online learning to rank to offline/historical approaches.

- The time is ripe for real-world experiments.
- We can compare online learning to rank to offline/historical approaches.
- See its effectiveness for **personalization**.

- The time is ripe for real-world experiments.
- We can compare online learning to rank to offline/historical approaches.
- See its effectiveness for **personalization**.
- Many different models, settings, and extensions possible.

- The time is ripe for real-world experiments.
- We can compare online learning to rank to offline/historical approaches.
- See its effectiveness for **personalization**.
- Many different models, settings, and extensions possible.

Please continue on our work:

https://github.com/HarrieO/OnlineLearningToRank.

- Q. Ai, K. Bi, C. Luo, J. Guo, and W. B. Croft. Unbiased learning to rank with unbiased propensity estimation. *arXiv preprint arXiv:1804.05938*, 2018.
- O. Chapelle and Y. Chang. Yahoo! Learning to Rank Challenge Overview. *Journal of Machine Learning Research*, 14:1–24, 2011.
- K. Hofmann, A. Schuth, S. Whiteson, and M. de Rijke. Reusing historical interaction data for faster online learning to rank for ir. In *Proceedings of the sixth ACM international conference on Web search and data mining*, pages 183–192. ACM, 2013.
- T. Joachims. Optimizing search engines using clickthrough data. In *Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 133–142. ACM, 2002.
- T. Joachims, A. Swaminathan, and T. Schnabel. Unbiased learning-to-rank with biased feedback. In *Proceedings of the Tenth ACM International Conference on Web Search and Data Mining*, pages 781–789. ACM, 2017.

References ii

- D. Lefortier, P. Serdyukov, and M. de Rijke. Online exploration for detecting shifts in fresh intent. In *CIKM 2014: 23rd ACM Conference on Information and Knowledge Management*. ACM, November 2014.
- H. Oosterhuis and M. de Rijke. Sensitive and scalable online evaluation with theoretical guarantees. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pages 77–86. ACM, 2017.
- H. Oosterhuis and M. de Rijke. Differentiable unbiased online learning to rank. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pages 1293–1302. ACM, 2018.
- H. Oosterhuis and M. de Rijke. Optimizing ranking models in the online setting. In ECIR. ACM, 2019.
- T. Qin and T.-Y. Liu. Introducing letor 4.0 datasets. arXiv preprint arXiv:1306.2597, 2013.
- M. Sanderson. Test collection based evaluation of information retrieval systems. *Foundations and Trends in Information Retrieval*, 4(4):247–375, 2010.

References iii

- A. Schuth, H. Oosterhuis, S. Whiteson, and M. de Rijke. Multileave gradient descent for fast online learning to rank. In *Proceedings of the Ninth ACM International Conference on Web Search and Data Mining*, pages 457–466. ACM, 2016.
- H. Wang, R. Langley, S. Kim, E. McCord-Snook, and H. Wang. Efficient exploration of gradient space for online learning to rank. *arXiv preprint arXiv:1805.07317*, 2018a.
- X. Wang, M. Bendersky, D. Metzler, and M. Najork. Learning to rank with selection bias in personal search. In *Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval*, pages 115–124. ACM, 2016.
- X. Wang, N. Golbandi, M. Bendersky, D. Metzler, and M. Najork. Position bias estimation for unbiased learning to rank in personal search. In *Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining*, pages 610–618. ACM, 2018b.
- Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling bandits problem. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 1201–1208. ACM, 2009.

T. Zhao and I. King. Constructing reliable gradient exploration for online learning to rank. In *Proceedings of the 25th ACM International on Conference on Information and Knowledge Management*, pages 1643–1652. ACM, 2016.

All content represents the opinion of the author(s), which is not necessarily shared or endorsed by their employers and/or sponsors.