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Introduction



Learning to Rank in Information Retrieval

Ranking systems are the basis for search and most recommendation.

Learning to rank enables the optimization of ranking systems:

• Directly improves user experience.

• Increase engagements, conversions, sales, views, etc.

Traditionally learning to rank uses annotated datasets:

• Relevance annotations for query-document pairs provided by human judges.
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Problems with Supervised Approach

Some of the most substantial limitations of annotated datasets are:

• expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).

• unethical to create in privacy-sensitive settings (Wang et al., 2016).

• impossible for small scale problems e.g. personalization.

• stationary, cannot capture future changes in relevancy (Lefortier et al., 2014).

• not necessarily aligned with actual user preferences (Sanderson, 2010),

i.e. annotators and users often disagree.
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Learning from User Interactions



Learning from User Interactions: Advantages

Learning from user interactions solves the problems of annotations:

• Interactions are virtually free if you have users.

• User behaviour is indicative of their preferences.

• Interactions give implicit feedback.
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Learning from User Interactions: Difficulties

User interactions bring their own difficulties:

• Noise:

• Users click for unexpected reasons.

• Often clicks occur not because of relevancy.

• Often clicks do not occur despite of relevancy.

• Bias: Interactions are affected by factors other than relevancy:

• Position bias: Higher ranked documents get more attention.

• Selection bias: Interactions are limited to the presented documents.

• Presentation bias: Results that are presented different will be treated different.

• . . .
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The Golden Triangle

Source: http://www.mediative.com/
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Learning from User Interactions: Goal

Goal of unbiased learning to rank from user interactions:

• Learn the relevance preferences of the user from their interactions.

• Avoid being biased by other factors that influence interactions.
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Learning from User Interactions: Conclusion

Learning from Historical Interactions:

• Learn/estimate a model of user behaviour including their biases.

• Learn from historical data while adjusting for these biases.

• See: (Wang et al., 2018b; Joachims et al., 2017; Ai et al., 2018)

Online Learning to Rank:

• Algorithms that can intervene during the learning process.

• Handle biases by having control over displayed results.
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Dueling Bandit Gradient Descent



Dueling Bandit Gradient Descent: Introduction

Introduced by Yue and Joachims (2009) as the first online learning to rank method.

Intuition:

• Interleaving can compare rankers from user interactions.

• By sampling model variants and comparing them with interleaving,

the gradient of a model w.r.t. user satisfaction can be estimated.

8



Dueling Bandit Gradient Descent: Visualization

User

W
ei

gh
t #

1

Weight #2

9



Dueling Bandit Gradient Descent: Visualization

Query
User

W
ei

gh
t #

1

Weight #2

10



Dueling Bandit Gradient Descent: Visualization

Query
User

W
ei

gh
t #

1

Weight #2

11



Dueling Bandit Gradient Descent: Visualization

Query
User

W
ei

gh
t #

1

Weight #2

12



Dueling Bandit Gradient Descent: Visualization

Query

Document

Document

Document

Document

Ranking B

User

W
ei

gh
t #

1

Weight #2

Document

Document

Document

Document

Ranking A

13



Dueling Bandit Gradient Descent: Visualization

Query

Document

Document

Document

Document

Ranking B

User

W
ei

gh
t #

1

Weight #2

Document

Document

Document

Document

Ranking A

Document

Document

Document

Document

Displayed Results

Interleaving

14



Dueling Bandit Gradient Descent: Visualization

Query

Document

Document

Document

Document

Ranking B

User

W
ei

gh
t #

1

Weight #2

Document

Document

Document

Document

Ranking A

Document

Document

Document

Document

Displayed Results

Seeing/Interacting

Interleaving

15



Dueling Bandit Gradient Descent: Visualization

Query

Document

Document

Document

Document

Ranking B

User

W
ei

gh
t #

1

Weight #2

Document

Document

Document

Document

Ranking A

Document

Document

Document

Document

Displayed Results

Seeing/Interacting

Interleaving

Learning

16
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Dueling Bandit Gradient Descent: Properties

Basis of the online learning to rank field,

virtually all existing methods are extensions of this algorithm

(Schuth et al., 2016; Hofmann et al., 2013; Zhao and King, 2016; Wang et al., 2018a).

Problems with Dueling Bandit Gradient Descent:

• A considerable gap between offline learning to rank performance,

even for subsequent extensions of method.

• Ineffective at optimizing non-linear models.

• No proven regret bounds for ranking problems (Oosterhuis and de Rijke,

2019).
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Dueling Bandit Gradient Descent: Results
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Results of simulations on the MSLR-WEB10k dataset,

a perfect user (left) and an informational user (right).
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Pairwise Differentiable Gradient Descent

We recently introduced Pairwise Differentiable Gradient Descent (Oosterhuis and

de Rijke, 2018):

• Very different from previous Online Learning to Rank methods,

that relied on sampling model variations.

Intuition:

• A pairwise approach can be made unbiased, while being differentiable,

without relying on online evaluation methods or the sampling of models.
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Plackett Luce Model

Pairwise Differentiable Gradient Descent optimizes a Plackett Luce ranking

model, this models a probabilistic distribution over documents.

With the ranking scoring model f(d) the distribution is:

P (d|f,D) =
expf(d)∑

d′∈D expf(d′)
(1)

Unlike DBGD, confidence is explicitly modelled and exploration naturally varies

per query and even within the ranking.
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Bias in Pairwise Inference

Similar to existing pairwise methods (Oosterhuis and de Rijke, 2017; Joachims, 2002),

Pairwise Differentiable Gradient Descent infers pairwise document preferences from

user clicks:

document 1

document 2

document 3

document 4

document 5

This approach is biased:

• Some preferences are more likely to be inferred due to position/selection bias.
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Reversed Pair Rankings

Let R∗(di, dj , R) be R but with the positions of di and dj swapped:

document 1

document 2

document 3

document 4

document 5

document 3

document 2

document 1

document 4

document 5

We assume:

• For a preference di � dj inferred from ranking R, if both are equally relevant

the opposite preference dj � di is equally likely to be inferred from R∗(di, dj , R).

Then scoring as if R and R∗ are equally likely to occur makes the gradient unbiased.
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Unbiasing the Pairwise Update

The ratio between the probability of the ranking and the reversed pair ranking

indicates the bias between the two directions:

ρ(di, dj , R) =
P (R∗(di, dj , R)|f,D)

P (R|f,D) + P (R∗(di, dj , R)|f,D)
. (2)

We use this ratio to unbias the gradient estimation:

∇f ≈
∑

di>cdj

ρ(di, dj , R)∇P (di � dj |f,D). (3)
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Unbiasedness of Pairwise Differentiable Gradient Descent

Under the reversed pair ranking assumption, we prove that the expected estimated

gradient can be written as:

E[∇f ] =
∑
di,dj

αij(f
′(di)− f ′(dj)). (4)

Where the weights αij will match the user preferences in expectation:

di =rel dj ⇔ αij = 0, (5)

di >rel dj ⇔ αij > 0, (6)

di <rel dj ⇔ αij < 0. (7)

Thus the estimated gradient is unbiased w.r.t. document pair preferences.
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Pairwise Differentiable Gradient Descent: Method

Start with initial model ft.

Then indefinitely:

1 Wait for a user query.

2 Sample (without replacement) a ranking R from the document distribution:

P (d|D, ft) =
expft(d)∑

d′∈D expft(d′)
. (8)

3 Display the ranking R to the user.

4 Infer document preferences from the user clicks: c.

5 Update model according to the estimated (unbiased) gradient:

∇ft ≈
∑

di>cdj

ρ(di, dj , R)∇P (di � dj |D, ft). (9)
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Pairwise Differentiable Gradient Descent: Visualization
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Pairwise Differentiable Gradient Descent: Visualization
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Experimental Results



Experimental Setup

Comparison of Pairwise Differentiable Gradient Descent with previous Online

Learning to Rank methods.

Simulations based on the annotated learning-to-rank datasets.

• Largest available industry datasets: MSLR-Web10k, Yahoo Webscope, Istella.

User behaviour simulated using cascading click models.

Experiments repeated under varying levels of noise and bias.
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Pairwise Differentiable Gradient Descent: Results

Results across all datasets (MSLR-Web10k, Yahoo Webscope, Istella) we observe:

• Large improvements in performance of convergence under all levels of noise.

• Much faster learning (better user experience) under all levels of noise.

Findings further generalized in follow-up work (Oosterhuis and de Rijke, 2019).
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Pairwise Differentiable Gradient Descent: Results Long Term
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Results from simulations on the MSLR-WEB10k dataset,

a perfect user (left) and an informational user (right).
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Conclusion

With the introduction of Pairwise Differentiable Gradient Descent we have:

• the first online method to convergence near offline levels of performance.

• considerably faster learning (user experience) than before.

• performance of an non-linear model to exceed linear model.

• computational efficiency much greater than most previous methods.

• currently no proven regret bounds.
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Future Directions for Online Learning to Rank

Now that performance is on the level of offline learning to rank:

• The time is ripe for real-world experiments.

• We can compare online learning to rank to offline/historical approaches.

• See its effectiveness for personalization.

• Many different models, settings, and extensions possible.

Please continue on our work:

https://github.com/HarrieO/OnlineLearningToRank.

38
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