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Main Contributions



Main Contributions

The main contributions of this work are:

• The novel Logging-Policy Optimization Algorithm (LogOpt):

• Optimizes the logging policy to minimize variance of counterfactual estimation.

• Proof of bias in interleaving methods under rank-based position biased clicks.
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Introduction



Online Ranking Evaluation

The ranking evaluation task:

• Given two rankers which has the highest Click-Through-Rate (CTR)?

Online evaluation methods show rankings to users and observe their clicks.

Based on the observed clicks, they estimate:

• The absolute CTR difference or/and the binary CTR difference
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Goal: Desired Properties

We focus on three estimator properties for ranking evaluation:

• Consistency - does the estimation converge as more data is gathered.

• Unbiasedness - is the estimate equal to the true CTR difference in expectation.

• Variance - the expected difference between a single estimate and the mean.

The perfect evaluation method produces an estimator that is consistent and unbiased,

while having a minimal amount of variance.
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Preliminaries



Assumptions about User Behavior

This paper assumes rank-based position biased click behavior.

Click probability is a product of an examination probability and a relevance probability.

For a document d displayed in ranking R:

P (C = 1 | R, d)︸ ︷︷ ︸
click

= P (E = 1 | rank(d | R))︸ ︷︷ ︸
examination

P (R = 1 | d)︸ ︷︷ ︸
relevance

. (1)
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Existing Evaluation Methods



A/B Testing

A/B testing:

• Randomly divide users in two groups, expose

each to a different system, observe CTR of

each system.

• Consistent and unbiased.

• Variance depends on the group sizes and actual

CTR difference.

System A System B
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Interleaving

Interleaving methods combine rankings of different systems, and

infer preferences between them from clicks on the combined rankings.

Methods we considered:

• Team-Draft Interleaving - (Radlinski et al., 2008)

• Probabilistic Interleaving - (Hofmann et al., 2011)

• Optimized Interleaving - (Radlinski and Craswell, 2013)

Their properties:

• Consistent estimators.

• Biased w.r.t. rank-based position bias, we provide a proof by example.

• Variance tested in experiments.
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Counterfactual Evaluation

The basis for counterfactual learning to rank is counterfactual evaluation using

Inverse Propensity Scoring (IPS) estimators (Wang et al., 2016; Joachims et al.,

2017; Oosterhuis and de Rijke, 2020)

Correct for position bias by inversely weighting clicks w.r.t. examination probabilities:

P (R = 1 | d) =
P (C = 1 | R, d)

P (E = 1 | rank(d | R))
. (2)

Can be used to unbiasedly estimate CTR on ranking R′ from clicks on R:

P (C = 1 | R′, d) =
P (C = 1 | R, d)

P (E = 1 | rank(d | R))
P (E = 1 | rank(d | R′)). (3)
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Counterfactual Evaluation: Policy-Aware Estimator

We use the Policy-Aware estimator (Oosterhuis and de Rijke, 2020), which uses the

conditional examination probability:

P (E = 1 | q, d, π︸︷︷︸
ranking policy

) =
∑

R π(R | q)︸ ︷︷ ︸
prob. of π showing R

P (E = 1 | rank(d | R)). (4)

When comparing ranking policies π1 and π2, using clicks logged with logging policy π0,

a Policy-Aware estimate based on a single query interaction is:

f(π0, π1, π2, c, q) =
∑

d:c(d)=1

P (E = 1 | q, d, π1)− P (E = 1 | q, d, π2)
P (E = 1 | q, d, π0)

=
∑

d:c(d)=1

λd
ρd
.

(5)
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Taking the Counterfactual Online



Intuition behind LogOpt

The Policy-Aware counterfactual estimator is consistent and unbiased.

Variance depends on:

• The rankers in the comparison.

• The users click behavior.

• The logging policy used to gather clicks - we can control this!

Our novel Logging-Policy Optimization Algorithm (LogOpt) updates the logging

policy during the gathering of clicks:

• Turning counterfactual evaluation into online evaluation!
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LogOpt Visualization
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LogOpt in Detail

LogOpt performs stochastic gradient descent on estimated variance:

variance for query q︷ ︸︸ ︷
Var(∆̂ | q) =

∑
c

prob. of a click pattern c︷ ︸︸ ︷
P (c | q)

( true CTR diff.︷︸︸︷
∆ −

single estimate︷ ︸︸ ︷∑
d:c(d)=1

λd
ρd

)2

. (6)

The derivative reveal two potentially conflicting goals:

gradient w.r.t. logging policy π0︷ ︸︸ ︷
δ

δπ0
Var(∆̂ | q) =

∑
c

minimize frequency of high-error click patterns︷ ︸︸ ︷[
δ

δπ0
P (c | q)

](
∆−

∑
d:c(d)=1

λd
ρd

)2

+P (c | q)

 δ

δπ0

(
∆−

∑
d:c(d)=1

λd
ρd

)2


︸ ︷︷ ︸
minimize error of frequent click patterns

.

(7)
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LogOpt Solutions

Two problems that LogOpt solves:

• Problem: Relevances P (R = 1 | d) are unknown but required for the derivative.

Solution: Estimate relevances using EM-estimation, following Wang et al.

(2016).

• Problem: Derivatives are computationally infeasible due to summations over

all possible click patterns and all possible rankings.

Solution: Approximate gradients using Monte-Carlo sampling.
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Experiments



Experimental setup

Semi-synthetic experimental setup based on two commercial LTR datasets and

simulated position-biased clicks.

Generated 2,000 rankers for 1,000 comparisons, each ranker was trained on a random

sample of 100 queries and 50% of features.
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Results: Online Methods - Absolute Error

Yahoo! Webscope MSLR-Web30k

A
b

so
lu

te
E

rr
or

102 103 104 105 106

10−3

10−2

10−1

102 103 104 105 106

10−3

10−2

10−1

Number of Queries Issued Number of Queries Issued

A/B Testing
Optimized Interleaving

Probabilistic Interleaving
Team-Draft Interleaving

LogOpt (Position Bias Known)
LogOpt (Position Bias Estimated)

14



Results: Logging Policies - Absolute Error

Yahoo! Webscope MSLR-Web30k
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Conclusion

Main takeaways:

• By optimizing the logging policy, counterfactual evaluation turns into online

evaluation.

• We introduced the Logging-Policy Optimization Algorithm, our results show

that makes counterfactual evaluation as efficient as online evaluation methods.

• We proved that interleaving methods are biased w.r.t. rank-based position bias,

further research needed to understand the impact in practice.
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