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Main Contributions



Main Contributions

• Policy-Aware Estimator

• Problem: Item-selection bias in top-k ranking interactions.

• Solution: New estimator can correct under a stochastic logging policy.

• Loss functions for top-k Counterfactual Learning to Rank

• Adapt supervised LTR SOTA LambaLoss to optimize a counterfactual loss.
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Introduction: Top-k Ranking



Learning to Top-k Rank

Top-k ranking: very prevalent in search and

recommendation.

Goal: optimize a ranking model for top-k ranking.
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Background:

Counterfactual Learning to Rank



Counterfactual Learning to Rank

Learn from historically logged user clicks (Joachims et al., 2017; Wang et al., 2016).

Problem:

• Clicks are biased indicators of preference (Craswell et al., 2008).

Existing solution:

• Weight clicks to correct for position bias.
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Position Bias
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Existing Policy Oblivious Estimator

For an item d, displayed ranking R̄, and query q,

decompose the click probability according to examination hypothesis:

P (C = 1 | R̄, q, d) =

examination︷ ︸︸ ︷
P (E = 1 | R̄, d)

relevance︷ ︸︸ ︷
P (C = 1 | E = 1, q, d) . (1)

Existing work corrects for position bias by Inverse Propensity Scoring (Joachims

et al., 2017; Wang et al., 2016). Given N displayed rankings for query q:

relevance(q, d) ≈ 1

N

N∑
i=1

ci
P (E = 1 | R̄i, d)

. (2)
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Existing Policy Oblivious Estimator: Visualized
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Item-Selection Bias



Item-Selection Bias

Items that are not displayed cannot be examined:

rank(d | R̄) > k → P (E = 1 | R̄i, d) = 0. (3)

Existing approach does not work in top-k

rankings:

• No clicks to weight!
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The Novel Policy-Aware Estimator



The Novel Policy-Aware Estimator

If displayed rankings are sampled from a stochastic policy π,

the click probability can be conditioned on the policy:

P (C = 1 | π, q, d) =
∑
R̄

policy︷ ︸︸ ︷
π(R̄ | q)

examination︷ ︸︸ ︷
P (E = 1 | R̄, d)

relevance︷ ︸︸ ︷
P (C = 1 | E = 1, q, d) . (4)

Our Policy-Aware Estimator weights conditioned on the policy:

relevance(q, d) ≈ 1

N

N∑
i=1

ci
P (E = 1 | π, d)

=
1

N

N∑
i=1

ci∑
R̄ π(R̄ | q)P (E = 1 | R̄, d)

. (5)

Unbiased if every item has a non-zero chance of being displayed in the top-k.
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The Novel Policy-Aware Estimator: Visualized

item 1

item 2

item 3

item 4

item 5

query

50%

70%

90%

40%

  0%

item 1

item 2

item 3

item 5

item 4

80% 20%Policy prob:

Weight: 12.5

9



Ranking Losses for Top-k Ranking



LambdaLoss for Counterfactual Learning to Rank

LambdaLoss is a state-of-the-art method for supervised LTR (Wang et al., 2018).

We adapt it to optimize a counterfactual loss (based on a new model f):

Gd =
1

N

N∑
i=1

ci · 1[di = d]

P (E = 1 | π, d)
, Dd =

1

log2(rank(d | f, q) + 1)
. (6)

More adaptations to optimize top-k losses.

State-of-the-art supervised method applicable to counterfactual LTR!
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Experiments



Experimental setup

Semi-synthetic setup based on commercial LTR datasets:

• Yahoo Webscope and MSLR-Web30k.

Displayed top-k rankings based on a pretrained ‘production’ ranker:

• without randomization, and

• with randomization: random (remaining) item placed on position k.

108 clicks based on dataset labels, with added noise and position bias.
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Results

MSLR-Web30k
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Related Work



Related Work

Correcting for Selection Bias in Learning-to-rank Systems by Ovaisi et al. (2020)

• Alternative method for dealing with item-selection bias.

Addressing Trust Bias for Unbiased Learning-to-Rank by Agarwal et al. (2019)

• Mention that LambdaLoss can be used for counterfactual LTR.
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Conclusion



Conclusion

Main takeaways:

• Existing Counterfactual LTR cannot correct item-selection bias.

• Novel Policy-Aware estimator can under mild randomization.

• Adapted LambdaLoss works for counterfactual LTR.
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Extra Results

MSLR-Web30k - top-5 setting
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