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Papers in this talk:
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Rankings
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• When Inverse Propensity Scoring does not Work:

Affine Corrections for Unbiased Learning to Rank
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CIKM 2020

• Unifying Online and Counterfactual Learning to Rank

Harrie Oosterhuis and Maarten de Rijke - WSDM 2021
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Learning from User Interactions with Rankings:
A Unification of the Field
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Introduction:

Counterfactual Learning to Rank



Counterfactual Learning to Rank

Goal:

• Optimize a ranking model that matches the user preferences between items,

based on historically logged user clicks.

Problem:

• Clicks are biased indicators of preference (Craswell et al., 2008):

factors - other than relevance - also influence click behavior.

Existing solution:

• Weight clicks to correct for position bias (Joachims et al., 2017; Wang et al.,

2016).
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Position Bias
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Existing Policy-Oblivious Estimator

For an item d, a rank k (a.k.a. position),

decompose the click probability according to rank-based examination

model (Craswell et al., 2008):

P (C = 1 | k, d) =

examination︷ ︸︸ ︷
P (E = 1 | k)

relevance︷ ︸︸ ︷
P (C = 1 | E = 1, d) .

Existing work corrects for position bias by Inverse Propensity Scoring (Joachims

et al., 2017; Wang et al., 2016). Given N displayed rankings:

relevance(d) ≈ 1

N

N∑
i=1

ci(d)

P (E = 1 | ki(d))
.
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Existing Policy-Oblivious Estimator: Visualized
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Existing Policy-Oblivious Estimator: Visualized Again
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Position Bias Estimation

Estimating position bias can be done via:

• Randomization:

• Swapping the positions of item pairs (Joachims et al., 2017).

• A/B testing (Agarwal et al., 2019b).

• Expectation-Maximization:

• Bias estimation is easy with an accurate relevance model, and vice versa (Wang

et al., 2018a).

• Dual Learning Objective (Ai et al., 2018)

For this talk, we will assume the exact bias is known.
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Part I: Top-k Ranking



Learning to Top-k Rank

Top-k ranking:

• setting where only K items can be displayed,

• very prevalent in search and recommendation.
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Item-Selection Bias



Item-Selection Bias

Items that are not displayed cannot be examined:

k > K → P (E = 1 | k, d) = 0.

Existing approach does not work in top-k

rankings:

• No clicks to weight!
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The Novel Policy-Aware Estimator



The Novel Policy-Aware Estimator

If displayed rankings are sampled from a stochastic policy π,

the click probability can be conditioned on the policy:

P (C = 1 | π, d) =

K∑
k=1

policy︷ ︸︸ ︷
π(k | d)

examination︷ ︸︸ ︷
P (E = 1 | k)

relevance︷ ︸︸ ︷
P (C = 1 | E = 1, d) .

Our Policy-Aware Estimator weights conditioned on the policy:

relevance(d) ≈ 1

N

N∑
i=1

ci(d)

P (E = 1 | π, d)
=

1

N

N∑
i=1

ci(d)∑K
k=1 π(k | d)P (E = 1 | k, d)

.

Unbiased if every item has a non-zero chance of being displayed in the top-k.
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The Novel Policy-Aware Estimator: Visualized
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Experiments



Experimental setup

Semi-synthetic setup based on commercial LTR datasets:

• Yahoo Webscope and MSLR-Web30k.

Displayed top-k rankings based on a pretrained ‘production’ ranker:

• without randomization, and

• with randomization: random (remaining) item placed on position K.

108 clicks based on dataset labels, with added noise and position bias.
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Results
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Conclusion: Part I

Policy-Aware Unbiased Learning to Rank for Top-k Rankings

Harrie Oosterhuis and Maarten de Rijke - SIGIR 2020

Main takeaways:

• Existing Counterfactual LTR cannot correct item-selection bias.

• Novel Policy-Aware estimator can under mild randomization:

• by basing propensities on the logging policy instead of individual rankings.

Related work at WWW’20 by Ovaisi et al. (2020) that uses the Heckman’s two-stage method. 16



Part II: Trust Bias



Rank-Based Position Bias

So far, we have assumed the rank-based position bias model (Craswell et al., 2008):

P (C = 1 | k, d) =

examination︷ ︸︸ ︷
P (E = 1 | k, d)

relevance︷ ︸︸ ︷
P (C = 1 | E = 1, d) .

This assumes that - once examined - each rank is treated similarly by users.

• This ignores the trust that users have in ranking systems.

Users are more likely to click on examined non-relevant items that are ranked

higher (Joachims et al., 2005).
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Trust Bias Model

Agarwal et al. (2019a) propose modelling perceived relevance

and that items at higher ranks are more likely to be perceived as relevant.

Probability of clicking conditioned on relevance R, examination E and rank k:

ε+k = P (C = 1 | R = 1, E = 1, k), ε−k = P (C = 1 | R = 0, E = 1, k).

The probability of a click on item d at rank k:

P (C = 1 | k, d) = P (E = 1 | k, d)︸ ︷︷ ︸
examination

(
ε+k P (R = 1 | d)︸ ︷︷ ︸
actually relevant

+ ε−k P (R = 0 | d)︸ ︷︷ ︸
incorrectly perceived relevant

)
.
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Emperical Estimate of Trust Bias

Agarwal et al. (2019a) infer these parameters from real-world user behavior

and show their model is better at predicting user behavior.
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Affine Corrections for Trust Bias

We introduce the following compact notation (Vardasbi et al., 2020):

P (C = 1 | k, d) = αkP (R = 1 | d) + βk,

where

αk = P (E = 1 | k, d)(ε+k − ε
−
k )︸ ︷︷ ︸

correlation between clicks and relevance

, βk = P (E = 1 | k, d)ε−k︸ ︷︷ ︸
click-through-rate from user trust

.

We prove it is impossible to correct for trust bias with IPS estimation.
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Affine Corrections for Trust Bias

The trust bias model is an affine transformation from relevance to click probabilities:

P (C = 1 | k, d) = αkP (R = 1 | d) + βk.

This affine transformation can be inversed:

P (R = 1 | d) =
P (C = 1 | k, d)− βk

αk
.

Based on this observation, we propose the unbiased affine estimator:

relevance(d) ≈ 1

N

N∑
i=1

ci(d)− βk(d)

αk(d)
.

21



Part III: Unifying Online and

Counterfactual LTR



Counterfactual and Online Learning to Rank

Unbiased Learning to Rank:

• Learning from clicks while correcting for interaction biases.

Online Learning to Rank:

• Correct for bias by randomizing results through online interventions.

Counterfactual Learning to Rank:

• Infer a model of bias, use it to correct when learning from historical click data.
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Position Bias, Item-Selection Bias and Trust Bias

Position Bias:

• Users are more likely to examine higher ranked results (Craswell et al., 2008).

• Solution: Inverse Propensity Scoring (Joachims et al., 2017).

Item-Selection Bias:

• Users cannot examine items that are not displayed (Ovaisi et al., 2020).

• Solution: Policy-Aware Propensities (Oosterhuis and de Rijke, 2020).

Trust Bias:

• Users are more likely to incorrectly presume relevance of higher ranked

results (Agarwal et al., 2019a).

• Solution: Apply inverse affine transformation (Vardasbi et al., 2020).
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Intervention-Oblivious Estimator



Intervention-Oblivious Estimator

Starting assumption: clicks follow an affine model, for item d displayed at rank k:

P (C = 1 | d, k) = αkP (R = 1 | d) + βk.

We condition the click probability on the logging policy π:

P (C = 1 | d, π) =
K∑
k=1

π(k | d)(αkP (R = 1 | d) + βk)

= Ek[αk | d, π]P (R = 1 | d) + Ek[βk | d, π].

The intervention-oblivious estimator is based on the inverse of this transformation:

P (R = 1 | d) =
P (C = 1 | d, π)− Ek[βk | d, π]

Ek[αk | d, π]
.
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Intervention-Oblivious Estimator: Visualization
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Intervention-Aware Estimator

Due to interventions the logging policy is updated during data-gathering.

Let Π contain all logging policies for each timestep t:

Π = {π1, π2, . . .}.

We can condition the click probability on the set Π:

P (C = 1 | d,Π) =
1

|Π|
∑
πt∈Π

K∑
k=1

πt(k | d)(αkP (R = 1 | d) + βk)

= Ek[αk | d,Π]P (R = 1 | d) + Ek[βk | d,Π].

The intervention-aware estimator is based on the inverse:

P (R = 1 | d) =
P (C = 1 | d,Π)− Ek[βk | d,Π]

Ek[αk | d,Π]
.
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Intervention-Aware Estimator: Visualization
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Intervention-Aware Estimator: Example
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Example of an intervention at t = 100 and how propensities change as the total

number of timesteps increases.
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Experiments and Results



Experimental Setup

Semi-synthetic experiments on the Yahoo! Webscope dataset (Chapelle and Chang,

2011).

Affine top-5 click model based parameters inferred by Agarwal et al. (2019a).

Both counterfactual and online experiments,

online interventions are spread evenly on a logarithmic scale.
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Counterfactual Methods: Counterfactual Comparison
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Counterfactual Methods: Online Comparison
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Effect of Online Interventions
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Online Methods: Online Comparison
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Online Methods: Counterfactual Comparison

Multiple Settings
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Conclusion

Unifying Online and Counterfactual Learning to Rank

Harrie Oosterhuis and Maarten de Rijke - WSDM 2021

Main Takeaways:

• Intervention-Aware Estimator:
• Novel counterfactual/online estimator.

• Most reliable choice for counterfactual learning.

• Online performance comparable to state-of-the-art.

• PDGD is not reliable when not applied fully online.

• A single method that is the best choice for both online and counterfactual

learning to rank.
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