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Introduction



Example of Ranking for Search
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Example of Ranking for Recommendation
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Learning to Rank

Learning to Rank (LTR) is:

“... the task to automatically construct a ranking model using training data, such

that the model can sort new objects according to their degrees of relevance,

preference, or importance.”

— Liu et al. (2009)

Learning to Rank is a core task in informational retrieval:

• Key component for search and recommendation.
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Learning to Rank: Problem Definition

The ranking R of ranker fθ over a document set D is:

R = (R1, R2, R3, . . .),

where documents are ordered by their (descending) scores:

fθ(R1) ≥ fθ(R2) ≥ fθ(R3) ≥ . . . ,

and every document is in the ranking:

d ∈ D ⇐⇒ d ∈ R.
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Learning to Rank: Problem Definition

For this talk, we will cast the goal of LTR as:

• Find the parameters θ for the model fθ,

where sorting documents d according to their scores fθ(d)

results in the most optimal rankings.

We will later define what is optimal according to well-known ranking metrics.
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Limitations of Annotated Datasets



Learning to Rank from Annotated Datasets

Traditionally, learning to rank is supervised through annotated datasets:

• Relevance annotations for query-document pairs provided by human judges.

However, over time several limitations of this approach have become apparent.
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Limitations of the Annotated Datasets

Some of the most substantial limitations of annotated datasets are:

• expensive to make (Qin and Liu, 2013; Chapelle and Chang, 2011).

• unethical to create in privacy-sensitive settings (Wang et al., 2016).

• impossible for small scale problems, e.g., personalization.

• stationary, cannot capture future changes in relevancy (Lefortier et al., 2014).

• not necessarily aligned with actual user preferences (Sanderson, 2010),

i.e., annotators and users often disagree.
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Limitations of the Supervised Approach

Annotated datasets are valuable and have an important place in research and

development.

However, the supervised approach is:

• Unavailable for practitioners without a considerable budget.

• Impossible for certain ranking problems.

• Often misaligned with true user preferences.

Therefore, there is a need for an alternative learning to rank approach.
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Learning from User Interactions



Learning from User Interactions: Advantages

Learning from user interactions solves the problems of annotations:

• Interactions are virtually free if you have users.

• User behavior is indicative of their preferences.

User interactions also bring their own difficulties:

• Interactions give implicit feedback.
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Learning from User Interactions: Difficulties

User interactions bring their own difficulties:

• Noise:

• Users click for unexpected reasons.

• Often clicks occur not because of relevancy.

• Often clicks do not occur despite of relevancy.

• Bias: Interactions are affected by factors other than relevancy:

• Position bias: Higher ranked documents get more attention.

• Item selection bias: Interactions are limited to the presented documents.

• Presentation bias: Results that are presented differently will be treated

differently.

• . . .
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The Golden Triangle

Image source: http://www.mediative.com/ 11
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Learning from User Interactions: Goal

Goal of unbiased learning to rank:

• Optimize a ranker w.r.t. relevance preferences of users from their interactions.

• Avoid being biased by other factors that influence interactions.
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Counterfactual Learning to Rank



Counterfactual Learning to Rank

The remainder of this talk will cover the following topics:

• Counterfactual Evaluation

• Evaluating unbiasedly from historical interactions.

• Propensity-weighted LTR

• Learning unbiasedly from historical interactions.

• Estimating Position Bias

• Practical Considerations
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Counterfactual Evaluation



Counterfactual Evaluation: Introduction

Evaluation is incredibly important before deploying a ranking system.

However, with the limitations of annotated datasets,

can we evaluate a ranker without deploying it or annotated data?

Counterfactual Evaluation:

Evaluate a new ranking function fθ using historical interaction data (e.g., clicks)

collected from a previously deployed ranking function fdeploy.
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Counterfactual Evaluation: Full Information

If we know the true relevance labels (y(di) for all i), we can compute any additive

linearly decomposable IR metric as:

∆(fθ, D, y) =
∑
di∈D

λ(rank(di | fθ, D)) · y(di),

where λ is a rank weighting function, e.g.,

Average Relevant Position ARP : λ(r) = r,

Discounted Cumulative Gain DCG : λ(r) =
1

log2(1 + r)
,

Precision at k Prec@k : λ(r) =
1[r ≤ k]

k
.
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Counterfactual Evaluation: Full Information

y(d1) = 1 Document d1

y(d2) = 0 Document d2

y(d3) = 0 Document d3

y(d4) = 1 Document d4

y(d5) = 0 Document d5
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Counterfactual Evaluation: Partial Information

We often do not know the true relevance labels y(di), but can only observe implicit

feedback in the form of, e.g., clicks:

• A click ci on document di is a biased and noisy indicator that di is relevant

• A missing click does not necessarily indicate non-relevance.
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Counterfactual Evaluation: Clicks

y(d1) = 1 Document d1

c1 = 1

y(d2) = 0 Document d2

c2 = 0

y(d3) = 0 Document d3

c3 = 1

y(d4) = 1 Document d4

/// c4 = 0

y(d5) = 0 Document d5

/// c5 = 0
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Counterfactual Evaluation: Clicks

Remember that there are many reasons why a click on a document may not occur:

• Relevance: the document may not be relevant.

• Observance: the user may not have examined the document.

• Miscellaneous: various random reasons why a user may not click.

Some of these reasons are considered to be:

• Noise: averaging over many clicks will remove their effect.

• Bias: averaging will not remove their effect.
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Counterfactual Evaluation: Examination User Model

If we only consider examination and relevance, a user click can be modelled by:

• The probability of document di being examined (oi = 1) in a ranking R:

P (oi = 1 | R, di).

• The probability of a click ci = 1 on di given its relevance y(di)) and whether it

was examined oi:

P (ci = 1 | oi, y(di)).

• Clicks only occur on examined documents, thus the probability of a click in

ranking R is:

P (ci = 1 ∧ oi = 1 | y(di), R) = P (ci = 1 | oi = 1, y(di)) · P (oi = 1 | R, di).
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Counterfactual Evaluation: Naive Estimator

A naive way to estimate is to assume clicks are a unbiased relevance signal:

∆̂NAIVE(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D)) · ci.

Even if no click noise is present: P (ci = 1 | oi = 1, y(di)) = y(di), this estimator is

biased by the observation probabilities:

Eo[∆̂NAIVE(fθ, D, c)] = Eo

 ∑
di:oi=1∧y(di)=1

λ(rank(di | fθ, D))


=

∑
di:y(di)=1

P (oi = 1 | R, di) · λ(rank(di | fθ, D)).
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Counterfactual Evaluation: Naive Estimator Bias

The biased estimator weights documents according to their observation

probabilities in the ranking R displayed during logging:

Eo[∆̂NAIVE(fθ, D, c)] =
∑

di:y(di)=1

P (oi = 1 | R, di) · λ(rank(di | fθ, D)).

In rankings, documents at higher ranks are more likely to be examined: position

bias.

Position bias causes logging-policy-confirming behavior:

• Documents displayed at higher ranks during logging are incorrectly considered

as more relevant.
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Inverse Propensity Scoring



Counterfactual Evaluation: Inverse Propensity Scoring

Inverse Propensity Scoring (IPS) estimators can remove bias:

• First introduced by Wang et al. (2016) and Joachims et al. (2017).

• Main idea: weight clicks depending on their observation probability

• Clicks near the top of the ranked list:

• Have high observation probability ⇔ Get assigned small weight

• Clicks near the bottom of the ranked list:

• Have low observation probability ⇔ Get assigned large weight

23



Counterfactual Evaluation: Inverse Propensity Scoring

Inverse Propensity Scoring (IPS) estimators can remove bias:

• First introduced by Wang et al. (2016) and Joachims et al. (2017).

• Main idea: weight clicks depending on their observation probability

• Clicks near the top of the ranked list:

• Have high observation probability ⇔ Get assigned small weight

• Clicks near the bottom of the ranked list:

• Have low observation probability ⇔ Get assigned large weight

23



Counterfactual Evaluation: Inverse Propensity Scoring

Counterfactual evaluation accounts for bias using Inverse Propensity Scoring (IPS):

∆̂IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci,

where

• λ(rank(di | fθ, D)): (weighted) rank of document di by ranker fθ,

• ci: observed click on the document in the log,

• P (oi = 1 | R, di): observation probability of di in ranking R displayed during

logging.

This is an unbiased estimate of any additive linearly decomposable IR metric.
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Counterfactual Evaluation: Proof of Unbiasedness

If no click noise is present, this provides an unbiased estimate:

Eo[∆̂IPS(fθ, D, c)] = Eo

∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci


= Eo

 ∑
di:oi=1∧y(di)=1

λ(rank(di | fθ, D))

P (oi = 1 | R, di)


=

∑
di:y(di)=1

P (oi = 1 | R, di) · λ(rank(di | fθ, D))

P (oi = 1 | R, di)

=
∑
di∈D

λ(rank(di | fθ, D)) · y(di)

= ∆(fθ, D, y).
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Counterfactual Evaluation: Robustness of Noise

So far we have no click noise: P (ci = 1 | oi = 1, y(di)) = y(di).

However, the IPS approach still works without these assumptions, as long as:

y(di) > y(dj)⇔ P (ci = 1 | oi = 1, y(di)) > P (cj = 1 | oj = 1, y(dj)).

Since we can prove relative differences are inferred unbiasedly:

Eo,c[∆̂IPS(fθ, D, c)] > Eo,c[∆̂IPS(fθ′ , D, c)]⇔ ∆(fθ, D) > ∆(fθ′ , D).

26



Propensity-weighted Learning to

Rank



Propensity-weighted Learning to Rank (LTR)

The inverse-propensity-scored estimator can unbiasedly estimate performance:

∆̂IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

P (oi = 1 | R, di)
· ci.

How do we optimize for this unbiased performance estimate?

• It is not differentiable.

• Common problem for all ranking metrics.

Solution:

• Optimize a bound on the metric instead (out of the scope of this talk).
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Propensity-weighted LTR: Walkthrough

Overview of the approach:

• Obtain a model of position bias.

• Acquire a large click-log.

• Then for every click in the log:

• Compute the propensity of the click:

P (oi = 1 | R, di).

• Calculate the gradient of the bound on the unbiased estimator:

∇θ
[
λ(rank(di | fθ, D))

P (oi = 1 | R, di)

]
.

• Update the model fθ by adding/subtracting the gradient.
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Propensity-weighted LTR: Semi-synthetic Experiments

Unbiased LTR methods are commonly evaluated through semi-synthetic

experiments (Joachims, 2002; Agarwal et al., 2019a; Jagerman et al., 2019).

The experimental setup:

• Traditional LTR dataset, e.g., Yahoo! Webscope (Chapelle and Chang, 2011).

• Create rankings according to a baseline ranking model.

• Simulate clicks by modelling:

• Click Noise, e.g., 10% chance of clicking on a non-relevant document.

• Position Bias, e.g., P (oi = 1 | R, di) = 1
rank(d|R) .

• Hyper-parameter tuning by unbiased evaluation methods.
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Propensity-weighted LTR: Results
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Estimating Position Bias

So far we have seen how to:

• Perform Counterfactual Evaluation with unbiased estimators.

• Perform Counterfactual LTR by optimizing unbiased estimators.

At the core of these methods is the propensity score: P (oi = 1 | R, di), which helps to

remove bias from user interactions.

In this section, we will show how this propensity score can be estimated for position

bias.
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Estimating Position Bias

Recall that position bias is a form of bias where higher positioned results are more

likely to be observed and therefore clicked.

Assumption: The observation probability only depends on the rank of a document:

P (oi = 1 | i).

The objective is now to estimate, for each rank i, the propensity P (oi = 1 | i).

This user model was first formalized by Craswell et al. (2008).
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Estimating Position Bias

RandTop-n Algorithm:

Document d1
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Estimating Position Bias

RandTop-n Algorithm:

1 Repeat:

• Randomly shuffle the top n items

• Record clicks

2 Aggregate clicks per rank

3 Normalize to obtain propensities pi ∝ P (oi | i)

Note: we only need propensities proportional to the true observation probability for

learning.
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Estimating Position Bias

Uniformly randomizing the top n results may negatively impacts users during data

logging.

There are various methods that minimize the impact to the user:

• RandPair: Choose a pivot rank k and only swap a random other document with

the document at this pivot rank (Joachims et al., 2017).

• Interventional Sets: Exploit inherent “randomness” in data coming from

multiple rankers (e.g., A/B tests in production logs) (Agarwal et al., 2017).
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Intervention Harvesting
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Intervention Harvesting
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Jointly Learning and Estimating

In the previous sections we have seen:

• Counterfactual ranker evaluation with unbiased estimators.

• Counterfactual LTR by optimizing unbiased estimators.

• Estimating propensity scores through randomization.

Instead of treating propensity estimation and unbiased learning to rank as two

separate tasks, recent work has explored jointly learning rankings and estimating

propensities.
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Jointly Learning and Estimating

Recall that the probability of a click can be decomposed as:

P (ci = 1 ∧ oi = 1 | y(di), R)︸ ︷︷ ︸
click probability

= P (ci = 1 | oi = 1, y(di))︸ ︷︷ ︸
relevance probability

· P (oi | R, di)︸ ︷︷ ︸
observation probability

.

In the previous sections we have seen that, if the observation probability is known,

we can find an unbiased estimate of relevance via IPS.
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Jointly Learning and Estimating

It is possible to jointly learn and estimate by iterating two steps:

1 Learn an optimal ranker given a correct propensity model:

P (ci = 1 | oi = 1, y(di))︸ ︷︷ ︸
relevance probability

=
P (ci = 1 ∧ oi = 1 | y(di), R)

P (oi | R, di)
.

2 Learn an optimal propensity model given a correct ranker:

P (oi | R, di)︸ ︷︷ ︸
observation probability

=
P (ci = 1 ∧ oi = 1 | y(di), R)

P (ci = 1 | oi = 1, y(di))
.
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Jointly Learning and Estimating

Given an accurate model of relevance, it is possible to find an accurate propensity

model, and vice versa.

This approach requires no randomization.

Recent work has solved this via either an Expectation-Maximization

approach (Wang et al. (2018a)) or a Dual Learning Objective (Ai et al. (2018)).
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Practical Considerations

Practitioners of counterfactual LTR systems will run into the problem of high variance.

High variance can be due to many factors:

• Not enough training data.

• Extreme position bias and very small propensities.

• Large amounts of noisy clicks on documents with small propensities.

The usual suspect is one or a few data points with extremely small propensity that

overpower the rest of the data set.

42



Practical Considerations

A typical solution to high variance is to apply propensity clipping.

Propensity clipping: Bound the propensity, to prevent any single sample from

overpowering the rest of the data set:

∆̂Clipped-IPS(fθ, D, c) =
∑
di∈D

λ(rank(di | fθ, D))

max{τ, P (oi = 1 | R, di)}
· ci.

This solution trades off bias for variance: it will introduce some amount of bias but

can substantially reduce variance.

Note that when τ = 1, we obtain the biased naive estimator.
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Practical Considerations
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Comparison to Supervised LTR

Supervised LTR:

• Uses manually annotated labels:

• expensive to create,

• impossible in many settings,

• often misaligned with actual user

preferences.

• Optimization is widely studied and

very effective w.r.t. evaluation on

annotated labels.

• Often unavailable for practitioners.

Counterfactual LTR:

• Uses click logs:

• available in abundant quantities,

• effectively no cost,

• contains noise and biases.

• Noise: amortized over large numbers of

clicks.

• Biases:

• position bias mitigated with inverse

propensity scoring.

• other biases are an active area of research.
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Conclusion

Today we discussed:

• User interactions with rankings are very biased.

• Counterfactual Learning to Rank:

• Correct for position bias with inverse propensity scoring.

• Requires an explicit user model.

• Unbiased learning from historical interaction logs.
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Small Selection of Recent Work in the Field

The unbiased learning to rank field is very active:

• Addressing Trust Bias for Unbiased Learning-to-Rank (Agarwal et al., 2019b).

• Fair Learning-to-Rank from Implicit Feedback (Yadav et al., 2019).

• Correcting for Selection Bias in Learning-to-rank Systems (Ovaisi et al., 2020).

• Policy-Aware Unbiased Learning to Rank for Top-k Rankings (Oosterhuis and

de Rijke, 2020).

• When Inverse Propensity Scoring does not Work: Affine Corrections for Unbiased

Learning to Rank (Vardasbi et al., 2020).
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End

Thank you for your attention!
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Notation Used in the Slides i

Definition Notation Example

Query q –

Candidate documents D –

Document d ∈ D –

Ranking R (R1, R2, . . . , Rn)

Document at rank i Ri Ri = d

Relevance y : D → N y(d) = 2

Ranker model with weights θ fθ : D → R fθ(d) = 0.75

Click ci ∈ {0, 1} –

Observation oi ∈ {0, 1} –

Rank of d when fθ ranks D rank(d | fθ, D) rank(d | fθ, D) = 4
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Notation Used in the Slides ii

Differentiable upper bound on rank(d, | fθ, D) rank(d, | fθ, D) –

Average Relevant Position metric ARP –

Discounted Cumulative Gain metric DCG –

Precision at k metric Prec@k –

A performance measure or estimator ∆ –
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Resources i

• Tensorflow Learning to Rank, allows for inverse propensity scoring:

https://github.com/tensorflow/ranking

• Inverse Propensity Scored Rank-SVM:

https://www.cs.cornell.edu/people/tj/svm_light/svm_proprank.html

• Pairwise Differentiable Gradient Descent and Multileave Gradient Descent:

https://github.com/HarrieO/OnlineLearningToRank

• Data and code for comparing counterfactual and online learning to rank

http://github.com/rjagerman/sigir2019-user-interactions

• An older online learning to rank framework: Lerot

https://bitbucket.org/ilps/lerot/
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