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Introduction: Counterfactual

Learning to Rank



Counterfactual Learning to Rank

Counterfactual Learning to Rank:

• Learning from clicks while correcting for interaction biases caused during

gathering of the data (Joachims et al., 2017).

We correct for Position Bias (Craswell et al., 2008) using the policy-aware

approach (Oosterhuis and de Rijke, 2020):

R̂IPS(d) =
1

N

N∑
i=1

ci(d)

ρd
.
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Feature-Based Model

The estimator R̂IPS can be used to unbiasedly estimate a ranking loss, e.g. DCG-loss.

For instance, we can optimize a linear model:
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Tabular Model

A tabular model simply stores the R̂IPS values and ranks accordingly:
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Model Trade-Off

Feature-Based Models:

• Generalized performance: Robust over all queries.

• Can be applied to previously unseen queries.

• Performance is often limited by the quality of the available features.

Tabular Models:

• Specialized performance: Independent behavior per query.

• Cannot be applied to previously unseen queries.

• Performance is not limited by features, can learn any possible ranking behavior.
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Model Trade-Off Visualized
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Model Trade-Off Visualized
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Goal

We want to have both:

• the safe robust behavior of feature-based models,

• the high-performance at convergence of tabular models,

and avoid

• the detrimental initial performance of tabular models.
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Performance Bounds



SEA Bound on Performance

Jagerman et al. (2020) introduce the Safe Exploration Algorithm:
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Novel Bound on Relative Performance

We introduce a new approach that bounds relative performance:
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The Generalization and

Specialization Framework



GENSPEC overview

Optimization Phase

• train a feature-based model on data over all queries,

• compute the values for the tabular model.

Serving Procedure

• choose between the logging policy and feature-based model

according to bound computed over all data,

• then choose between tabular model and previous choice

according to bound computed only on data for the specific query.
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GENSPEC overview
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Experimental Results



Performance on the Yahoo! Webscope Dataset
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Conclusion



Conclusion

Different models have different advantages and risks:

• feature-based: robust generalized performance,

• tabular: high performance at convergence, initial detrimental performance.

We introduced the Generalization and Specialization (GENSPEC) framework:

• optimizes two models for generalization and specialization,

• uses performance bounds to safely choose to deploy per query.

We can have both robust generalization and safe query-specialization in

counterfactual learning to rank.

Continue our work: https://github.com/HarrieO/2021WWW-GENSPEC
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