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Introduction: Contribution

Goal of this work:

• Optimize a Plackett-Luce (PL) model for relevance or fairness ranking metrics,

• with an unbiased method (no heuristic or bounding),

• in a computationally efficient way (avoid combinatorial problems).

Contribution: PL-Rank

• A novel sampling-based method for quickly estimating PL gradients.

• Derivation to prove the estimation is unbiased.
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Motivation: Stochastic Ranking

Traditionally a ranking model m tries to score items d ∈ D in order of relevance:

d ≻relevance d
′ → m(d) > m(d′).

In recent years, probabilistic ranking models have been argued for:

Fairness (Singh and Joachims, 2019; Diaz et al., 2020)

• a deterministic ranking will give most attention to a single item, even if there

are (almost) equally relevant items.

• A stochastic ranking model can more fairly distribute exposure over items.

Exploration (Hofmann et al., 2011; Oosterhuis and de Rijke, 2021)

• when learning from user clicks, a stochastic ranking model can try various

rankings according to its uncertainty.
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Problem Setting: Ranking Metrics

For any ranking y, an arbitrary ranking metric uses the weights per rank θk, the

relevance of the items P (R = 1 | q, d) = ρd, and the policy π with the probability of a

ranking π(y | q):

R(q) =
∑
y∈π

π(y | q)
K∑
k=1

θkP (R = 1 | q, yk) =
∑
y∈π

π(y)

K∑
k=1

θkρyk = Ey

[
K∑
k=1

θkρyk

]
.

This is taken in expectation over a query distribution:

R = Eq[R(q)] =
∑
q∈Q

P (q)R(q).

This description applies to well-known metrics: precision@k, recall@k, DCG, ARP.
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Background: Plackett-Luce Models

A Plackett-Luce model (Plackett, 1975; Luce, 2012) assumes the probability of

selecting an item d is determined by the value of it compared to the sum of values

over all items:

P (d | D) =
value of item d∑

d′∈D value of item d′
.

A SoftMax function is an instance of a Plackett-Luce model, where the exponential

function ensures positive non-zero values:

P (d | D) =
em(d)∑

d′∈D em(d′)
.
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Background: Plackett-Luce Ranking Model

A Plackett-Luce ranking model is repeatedly applied to the unplaced items:

π(d | y1:k, D) =

item score if not placed︷ ︸︸ ︷
1[d ̸∈ y1:k]e

m(d)∑
d′∈D\y1:k e

m(d′)︸ ︷︷ ︸
sum of all unplaced item scores

.

The probability of a ranking is the product over each item placement:

π(y) =
K∏
k=1

π(yk | y1:k−1, D).

We can sample from a Plackett-Luce ranking model by sampling Gumbel Noise:

ζd ∼ Gumbel, and sorting according to m(d) + ζd (Bruch et al., 2020).
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Background: Policy Gradients

The prevalent approach in existing work (Singh and Joachims, 2019; Bruch et al.,

2020) uses policy-gradients with the log-trick (Williams, 1992):

δ

δm
π(y) = π(y)

[
δ

δm
log(π(y))

]
.

Given N samples from π: y(i) ∼ π, the gradient can be unbiasedly estimated:

δ

δm
R(q) ≈ 1

N

N∑
i=1

[
δ

δm
log(π(y(i)))

]
︸ ︷︷ ︸

gradient w.r.t. log prob. of full ranking

(
K∑
k=1

θkρy(i)k

)
︸ ︷︷ ︸
observed reward

.
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Method: Placement Policy Gradients

A reward before rank k should not influence the probabilities of the ranking after k:

R(q) =
∑
y∈π

π(y)

K∑
k=1

θkρyk =

K∑
k=1

θk
∑
y∈π

π(y)ρyk =

K∑
k=1

θk
∑

y1:k∈π
π(y1:k)ρyk .

Given N samples from π: y(i) ∼ π, the gradient can be unbiasedly estimated:

δ

δm
R(q) ≈ 1

N

N∑
i=1

K∑
k=1

[
δ

δm
log(π(y

(i)
k |y(i)1:k−1))

]
︸ ︷︷ ︸
log prob. of item placement at k

K∑
x=k

θxρy(i)x︸ ︷︷ ︸
reward received after k

.
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Method: PL-Rank-1

Using the fact that π is a Plackett-Luce model, we can estimate the gradient using:

δ

δm
R(q) ≈

∑
d∈D

grad. w.r.t. score︷ ︸︸ ︷[
δ

δm
m(d)

]
1

N

N∑
i=1

( reward following placement︷ ︸︸ ︷ K∑
k=rank(d,y(i))

θkρy(i)k


−

rank(d,y(i))∑
k=1

π(d | y(i)1:k−1)

(
K∑

x=k

θxρy(i)x

)
︸ ︷︷ ︸

risk imposed by placement probability

)
.

Given N samples, this can be computed in O(N ·K ·D).

Flaw: items that are not in the top-K of any of the N sampled rankings will always

have a negative gradient.
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Method: PL-Rank-2

We can avoid the flaw while maintaining the O(N ·K ·D) complexity:

δ

δm
R(q) ≈

∑
d∈D

grad. w.r.t. score︷ ︸︸ ︷[
δ

δm
m(d)

]
1

N

N∑
i=1

future reward after placement︷ ︸︸ ︷ K∑
k=rank(d,y(i))+1

θkρy(i)k


+

rank(d,y(i))∑
k=1

π(d | y(i)1:k−1)

(
θkρd −

K∑
x=k

θxρy(i)x

)
︸ ︷︷ ︸

expected direct reward minus the risk of placement

.
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Fairness in Exposure

Fairness in exposure generally use rank-based exposure:

E(q, d) = Ey

[
K∑
k=1

θk1[yk = d]

]
=
∑
y∈π

π(y)

K∑
k=1

θk1[yk = d].

In this paper, we use a (novel) pairwise disparity-based fairness metric:

F(q) =
∑
d1∈D

∑
d2∈D\d1

(E(q, d1)ρd2 − E(q, d2)ρd1)
2.

PL-Rank can be applied to any rank-based exposure metric where:

δF(q)

δm
=
∑
d∈D

δF(q)

δE(q, d)
δE(q, d)
δm(d)

.
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Method: PL-Rank for Fairness

Fairness in exposure generally use rank-based exposure:

E(q, d) = Ey

[
K∑
k=1

θk1[yk = d]

]
=
∑
y∈π

π(y)

K∑
k=1

θk1[yk = d].

PL-Rank can be used to optimize a rank-based exposure metric F :

δ

δm
F(q) =

∑
d∈D

[
δ

δm
m(d)

]
Ey

[ K∑
k=rank(d,y)+1

θk

[
δF(q)

δE(q, yk)

]
+

rank(d,y)∑
k=1

π(d | y1:k−1)

(
θk

[
δF(q)

δE(q, d)

]
−

K∑
x=k

θx

[
δF(q)

δE(q, yx)

])]
.
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Results on Yahoo! Webscope
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Results on All Datasets
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Results: Exposure Fairness

Yahoo! Webscope
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Conclusion

PL-Rank: a novel LTR method for Plackett-Luce models:

• unbiased sample-based gradient estimation (no heuristic or bounding),

• computationally efficient (avoids combinatorial problems).

• applicable to relevance and fairness ranking metrics.

Continue our work: https://github.com/HarrieO/2021-SIGIR-plackett-luce
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Future Work: StochasticRank

The StochasticRank algorithm (Ustimenko and Prokhorenkova, 2020) uses sampled

noise to stochastically smooth a ranking function.

This algorithm has strong theoretical properties and could also be applied to

Plackett-Luce models with comparable computational complexity.

Very promising direction for finding computationally efficient, effective and broadly

applicable LTR.

A. Ustimenko and L. Prokhorenkova. Stochasticrank: Global optimization of scale-free discrete functions. In International

Conference on Machine Learning, pages 9669–9679. PMLR, 2020. 16
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