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Introduction



Counterfactual and Online Learning to Rank

Unbiased Learning to Rank:

• Learning from clicks while correcting for interaction biases.

Online Learning to Rank:

• Correct for bias by randomizing results through online interventions.

Counterfactual Learning to Rank:

• Infer a model of bias, use it to correct when learning from historical click data.
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Position Bias, Item-Selection Bias and Trust Bias

Position Bias:

• Users are more likely to examine higher ranked results (Craswell et al., 2008).

• Solution: Inverse Propensity Scoring (Joachims et al., 2017).

Item-Selection Bias:

• Users cannot examine items that are not displayed (Ovaisi et al., 2020).

• Solution: Policy-Aware Propensities (Oosterhuis and de Rijke, 2020).

Trust Bias:

• Users are more likely to incorrectly presume relevance at higher ranked

results (Agarwal et al., 2019).

• Solution: Apply inverse transformation (Vardasbi et al., 2020).
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Intervention-Oblivious Estimator



Intervention-Oblivious Estimator

Starting assumption: clicks follow an affine model, for item d displayed at rank k:

P (C = 1 | d, k) = αkP (R = 1 | d) + βk.

We condition the click probability on the logging policy π:

P (C = 1 | d, π) =
K∑
k=1

π(k | d)(αkP (R = 1 | d) + βk)

= Ek[αk | d, π]P (R = 1 | d) + Ek[βk | d, π].

The intervention-oblivious estimator is based on the inverse of this transformation:

P (R = 1 | d) =
P (C = 1 | d, π)− Ek[βk | d, π]

Ek[αk | d, π]
.
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Intervention-Oblivious Estimator: Visualization

deployed: π1 deployed: π2

Ek[αk | d, π1] = 0.1 Ek[αk | d, π2] = 0.5

Ek[αk | d′, π1] = 0.5 Ek[αk | d′, π2] = 0.5

Ek[βk | d, π1] = 0 Ek[βk | d, π2] = 0

Ek[βk | d′, π1] = 0 Ek[βk | d′, π2] = 0

1
Ek[αk|d,π1] = 10 1

Ek[αk|d,π2] = 2
1

Ek[αk|d′,π1] = 2 1
Ek[αk|d′,π2] = 2
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Intervention-Aware Estimator



Intervention-Aware Estimator

Due to interventions the logging policy is updated during data-gathering.

Let Π contain all logging policies for each timestep t:

Π = {π1, π2, . . .}.

We can condition the click probability on the set Π:

P (C = 1 | d,Π) =
1

|Π|
∑
πt∈Π

K∑
k=1

πt(k | d)(αkP (R = 1 | d) + βk)

= Ek[αk | d,Π]P (R = 1 | d) + Ek[βk | d,Π].

The intervention-aware estimator is based on the inverse:

P (R = 1 | d) =
P (C = 1 | d,Π)− Ek[βk | d,Π]

Ek[αk | d,Π]
.
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Experiments and Results



Experimental Setup

Semi-synthetic experiments on the Yahoo! Webscope dataset (Chapelle and Chang,

2011).

Affine top-5 click model based parameters inferred by Agarwal et al. (2019).

Both counterfactual and online experiments,

online interventions are spread evenly on a logarithmic scale.
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Counterfactual Methods: Counterfactual Comparison

Counterfactual Setting (no interventions)
N
D
C
G
@
5

102 103 104 105 106 107 108

0.70

0.72

0.74

0.76

Queries Issued

Full-Information
Affine

Intervention-Oblivious
Policy-Aware

Intervention-Aware

8



Counterfactual Methods: Online Comparison

Online Setting (50 interventions)
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Online Methods: Online Comparison

Online Setting
N
D
C
G
@
5

102 103 104 105 106 107

0.70

0.72

0.74

0.76

Queries Issued

Full-Information
COLTR (online)

PDGD (online)
Biased-PDGD (online)

Inter.-Aware (100 int.)

10



Online Methods: Counterfactual Comparison

Multiple Settings
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Conclusion



Conclusion

• Intervention-Aware Estimator:

• Novel counterfactual/online estimator.

• Most reliable choice for counterfactual learning.

• Online performance comparable to state-of-the-art.

• PDGD is not reliable when not applied fully online.

• A single method that is the best choice for both online and counterfactual

learning to rank.

• Continue our work: https://github.com/HarrieO/2021wsdm-unifying-LTR
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Extra Results: Effect of Online Interventions
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